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Symmetries in Dyck paths with air pockets

Jean-Luc Baril, Rigoberto Flórez, and José L. Raḿırez

Abstract. The main objective of this paper is to analyze symmetric and asymmetric peaks
in Dyck paths with air pockets (DAPs). These paths are formed by combining each maximal
run of down-steps in ordinary Dyck paths into a larger, single down-step. To achieve this,
we present a trivariate generating function that counts the number of DAPs based on their
length and the number of symmetric and asymmetric peaks they contain. We determine the
total numbers of symmetric and asymmetric peaks across all DAPs, providing an asymptotic
for the ratio of these two quantities. Recursive relations and closed formulas are provided
for the number of DAPs of length n, as well as for the total number of symmetric peaks,
weight of symmetric peaks, and height of symmetric peaks. Furthermore, a recursive relation
is established for the overall number of DAPs, similar to that for classic Dyck paths. A DAP
is said to be non-decreasing if the sequence of ordinates of all local minima forms a non-
decreasing sequence. In the last section, we focus on the sets of non-decreasing DAPs and
examine their symmetric and asymmetric peaks.
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1. Introduction

In their paper on lattice paths, Baril et al. [3] introduced a new type of lattice
paths in the first quadrant of Z2, called Dyck paths with air pockets (DAPs).
These paths start at the origin, end on the x-axis, and consist of up-steps
U = (1, 1) and down-steps Dk = (1,−k), where k ≥ 1, and no two down-
steps can be consecutive. The length of a path P is the number of its steps,
denoted by |P |. DAPs can be seen as a variation of ordinary Dyck paths
where maximal runs of down-steps are replaced by one large down-step. (As
remarked in [3], DAPs also correspond to a stack evolution with (partial) reset
operations that cannot be consecutive, see [20].) The authors enumerate these
paths and their prefixes with respect to the length, the type (up or down) of
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Figure 1. Symmetric and asymmetric peaks of a Dyck path
with air pockets

the last step, and the ordinate of the endpoint. Furthermore, they establish a
one-to-one correspondence between DAPs of length n and peak-less Motzkin
paths of length n − 1. In a subsequent paper, Baril et al. [4] generalized these
paths by allowing them to go below the x-axis, calling them grand Dyck paths
with air pockets (GDAP). They also provided enumerative results for these
paths based on their length and various restrictions on their minimum and
maximum ordinates. More recently, the definition of DAPs was extended to
include horizontal steps under certain conditions, as described in [5].

Let D be the set of all DAPs and Dn be the set of DAPs of length n. Addi-
tionally, a special subset of these paths, namely those that are non-decreasing,
is considered. A DAP is non-decreasing if, as the path is read from left to right,
the sequence of the minimal ordinates of the valleys (where a valley is an oc-
currence of DkU , k ≥ 1) is non-decreasing. This concept has been previously
studied in the literature (see, for example, [2,8,9]). The set of non-decreasing
DAPs is denoted by ND.

In this paper, the focus is on analyzing the distribution of symmetric and
asymmetric peaks in DAPs and non-decreasing DAPs. A maximal peak is de-
fined as an occurrence of UkD�, where k, � ≥ 1, that cannot be extended to
Uk+1D�. For the sake of simplicity, the term “peak” is used instead of “max-
imal peak”. (In literature, this type of concept may also be referred to as a
maximal pyramid.)

On the other hand, a symmetric peak is a peak (again, maximal) of the form
Δk := UkDk. An asymmetric peak is simply a peak that is not symmetric. We
use peak(P ), sp(P ), and ap(P ) to denote the total number of peaks, symmetric
peaks, and asymmetric peaks, respectively, in a given path P .

In addition to these parameters, the height and weight of each peak are
considered. The height of a peak is the maximum ordinate of its points, and
the weight of a peak is the difference between the maximum and minimum
ordinates. For a peak of the form UkD�, the weight is simply the max{k, �}.
We use sumh(P ) and symw(P ) to denote the sum of heights and weights of all
symmetric peaks in P , respectively.

For example, the path shown in Fig. 1, which has a length of 24, contains
four symmetric peaks and four asymmetric peaks. In this particular instance,
the height and weight of the symmetric peaks are 2, 3, and 1, corresponding
to the height and weight of the last three peaks. It is worth noting that in this
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example, both the height and weight are equal for each peak. However, in a
more general case, the height and weight can be distinct.

In recent years, there has been a significant amount of research on the
concept of symmetric peaks. In 2018, Asakly [1] introduced this concept for
words. Later, Flórez and Ramı́rez [18] extended the concept of symmetric and
asymmetric peaks to Dyck paths. The concept was further extended to non-
decreasing Dyck paths by Elizalde et al. [14] and Flórez et al. [17], to Motzkin
paths by Flórez and Ramı́rez [16], and to partial Dyck paths by Sun et al. [26].
Elizalde also provided other symmetric results on Dyck paths [13]. In some of
these papers, the authors refer to these objects as symmetric pyramids instead
of symmetric peaks.

This paper explores various characteristics of symmetric and asymmetric
peaks in both DAPs and non-decreasing DAPs. To provide statistics and ex-
amine the asymptotic behavior of the different features, generating functions
(g.f.) are used. These functions are defined using parameters such as path
length, the number of symmetric and asymmetric peaks, and the height of
symmetric peaks. Specifically, the total number of symmetric and asymmetric
peaks, as well as the height of symmetric peaks, are presented. Additionally,
we analyze the asymptotic behavior of the ratio between the number of sym-
metric peaks and the total number of peaks, and the ratio between the number
of asymmetric peaks and the total number of peaks.

Recursive relations for the features examined in this paper are provided, and
constructive proofs that rely on combinatorial arguments are offered. These
proofs aim to provide intuitive insights into the behavior of symmetric peaks
and their weight. For example, we present a recursive relation for the total
number of DAPs that is reminiscent of the recursive relation for the total
number of classic Dyck paths.

Using the generating functions and recursive relations, we derive closed
formulas for the statistics presented in this paper. Most of these formulas
use binomial coefficients or Fibonacci numbers. Notably, the total number of
DAPs is counted by the generalized Catalan number (see A004148 in [23]),
which among other things, counts also the peakless Motzkin paths.

Finally, a combinatorial interpretation of DAPs in terms of binary trees is
provided. Thus, we establish a constructive bijection between the trees and
DAPs.

2. Symmetric and asymmetric peaks in DAP

In this section, a generating function with three variables is introduced to
represent the length of the path, the number of symmetric peaks, and the
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number of asymmetric peaks, as defined in the introduction. Using this gen-
erating function, we obtain the number of paths in Dn that avoid symmet-
ric peaks as a corollary. Additionally, the total number of paths in Dn that
avoid asymmetric peaks—peaks located in paths with pyramids at the ground
level— is determined, aligning with the Fibonacci numbers Fn. Furthermore,
another corollary of the generating function provides insights into the asymp-
totic behavior of the ratio between the number of symmetric peaks and the
total number of peaks, as well as the ratio between the number of asymmetric
peaks and the total number of peaks.

We provide a recursive function that simultaneously counts the total num-
ber of paths in Dn and coincides with the generalized Catalan number. Fur-
thermore, we present recursive relations for the number of symmetric peaks
and the total number of peaks. We also derive a closed formula using binomial
coefficients for the total number of peaks.

Finally, we establish a combinatorial interpretation of DAPs in terms of
binary trees. We define a constructive bijection between the trees and DAPs
and provide an example to illustrate how the bijection works.

Considering the trivariate generating function:

Fsp,ap(x, y, z) =
∑

P∈D
x|P |ysp(P )zap(P ),

which represents the number of Dyck paths with air pockets of length n having
k symmetric peaks and � asymmetric peaks. Specifically, the coefficient of
xnykz� counts the number of such paths.

The following theorem presents the generating function Fsp,ap(x, y, z) in
terms of the length and the numbers of symmetric and asymmetric peaks:

Theorem 2.1. The generating function Fsp,ap(x, y, z) for the number of DAPs
with respect to the length and the numbers of symmetric and asymmetric peaks
is

(1 − x)
(
1 − x2 − x2y − x3y + 2x3z − √

(1 − x2(1 + y + xy − 2xz))2 − 4xp(x, y, z)
)

2xp(x, y, z)
,

where p(x, y, z) = (1 − x − x2(y − z))2.

Proof. For short, we set F = Fsp,ap(x, y, z). Let P be a nonempty DAP. Then,
we distinguish the following cases.

(1) If P = UaDaQ, a ≥ 1, where Q is a DAP, then the g.f. for such paths is
x2

1−xyF.

(2) If P = UUaDaQU bDb+1R, a, b ≥ 1, where Q,R are some DAP, then the
g.f. for these paths is

x
x2

1 − x
zF

x2

1 − x
zF =

x5

(1 − x)2
z2F 2.
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(3) If P = UUaDaQ̄R, a ≥ 1, where Q,R are DAPs (Q non-empty and R
possibly empty) and Q̄ is obtained from Q after increasing by one the
size of the last down-step, and Q does not end with a symmetric peak,
then the g.f. for these paths is

x
x2

1 − x
zBF,

where B is the g.f. for the number of nonempty DAPs not ending with
a symmetric peak. Considering the complement, we obtain easily B =
F − 1 − x2

1−xyF .
(4) If P = UQUaDa+1R, a ≥ 1, where Q,R are some DAPs (Q non-empty

and R possibly empty), and Q does not start with a symmetric peak,
then the g.f. for these paths is

xB′ x2

1 − x
zF,

where B′ is the g.f. for the number of nonempty DAPs not starting with
a symmetric peak. Using the complement as above, we easily have B′ =
B = F − 1 − x2

1−xyF .
(5) If P = UQ̄R where Q,R are DAPs (Q non-empty and R possibly empty)

such that Q does not start and end with a symmetric peak, and Q̄ is
obtained from Q after increasing by one the size of the last down-step. The
g.f. for this case is xCF where C is the g.f. for the number of nonempty
DAPs that do not start and end with a symmetric peak. Considering the
complement, we deduce easily C = B − x2y

1−xB.

Summing up all these cases, we obtain the following functional equation:

F = 1 +
x2

1 − x
yF +

x5

(1 − x)2
z2F 2 + 2

x3

1 − x
zF

(
F − 1 − x2

1 − x
yF

)

+xF

(
F − 1 − x2

1 − x
yF

)
(1 − x2y

1 − x
),

which gives us the desired result. �

The first terms of the Taylor expansion are as follows:

1 + x2y + x3y + (y2 + y)x4 + (2y2 + z2 + y)x5

+(y3 + 3y2 + 3z2 + y)x6 + O(x7),

where the weights of the DAPs of length 6 are shown in boldface in the expan-
sion. Figure 5 displays these eight DAPs and their corresponding contributions
to Fsp,ap(x, y, z).
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Figure 4. Decomposition of case (5)

Corollary 2.2. The generating function for the number of DAPs avoiding sym-
metric peaks is given by:

F (x, 0, 1) =
(1 − x)

(
1 − x2 + 2x3 − √

(1 − x)(1 − 3x + 3x2 − 5x3 + 4x4 − 4x5)
)

2x(1 − x + x2)2
.

The Taylor expansion of this generating function is

1 + x5 + 3x6 + 6x7 + 12x8 + 25x9 + 53x10 + 115x11 + O(x12),

where the sequence of coefficients does not appear in [23]. The bold coefficient
in the above series can be verified in Fig. 5.

Here, we use the standard notation Fn to denote the n-th Fibonacci num-
ber. Specifically, we have Fn = Fn−1+Fn−2 (n ≥ 2), with the initial conditions
F0 = 0 and F1 = 1.

Corollary 2.3. The generating function for the number of DAPs avoiding asym-
metric peaks is given by:

F (x, 1, 0) =
1 − x

1 − x − x2
.

That is, the number of DAPs of length n without asymmetric peaks is given by
the Fn−1.

It is worth noting that the Fibonacci sequence counts the compositions of
n into parts of size at least 2. In fact, a non-empty DAP of length n without
asymmetric peaks necessarily takes the form

Ua1Da1U
a2Da2 . . . UakDak

, with k ≥ 1, ai ≥ 1, and
n = k + a1 + a2 + · · · + ak,

and it can be associated with the composition of n: (a1+1), (a2+1), . . . , (ak+1),
see for instance Fig. 6.

We refer to [3] for the expression of the bivariate generating function for
DAPs with respect to the length and the number of peaks (symmetric and
asymmetric), which is denoted as F (x, 1, 1).
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Figure 6. Illustration of the bijection between length n
DAPs without asymmetric peaks and compositions of n

By calculating ∂y(F (x, y, 1))|y=1 and ∂z(F (x, 1, z))|y=1, we obtain the fol-
lowing two corollaries. The asymptotic approximations of the coefficient of zn

is obtained using classical methods presented in [15,22].

Corollary 2.4. The generating function for the total number of symmetric peaks
in all DAPs is given by:

x
(
−1 + 2x + 2x2 + 3x3 − 2x4 + (1 + 2x)(1 − x)

√
(1 − 3x + x2)(1 + x + x2)

)

2(1 − x)
√

(1 − 3x + x2)(1 + x + x2)
,

and the asymptotic for the n-th coefficient is

9 − 4
√

5
√

πn
√

14
√

5 − 30

(
1 +

√
5

2

)2n

.

The Taylor expansion is x2+x3+3x4+5x5+10x6+21x7+45x8+101x9+
O(x10), where the sequence of coefficients does not appear in [23]. In Fig. 5 it
is possible to verify that there are ten symmetric peaks in all DAPs of length
6. Notice that the asymptotic depends on the golden ratio 1+

√
5

2 which is a
root of the polynomial x2−x−1. In Theorem 2.9 we give a recurrence relation
to calculate the number of symmetric peaks in all DAP.

Corollary 2.5. The g.f. for the total number of asymmetric peaks in all DAPs
is

x
(
1 − x − 2x2 − x3 + x4 − (1 − x2)

√
(1 − 3x + x2)(1 + x + x2)

)

(1 − x)
√

(1 − 3x + x2)(1 + x + x2)
,

and an asymptotic for the n-th coefficient is

5
√

5 − 11
√

πn
√

14
√

5 − 30

(
1 +

√
5

2

)2n

.

The Taylor expansion of the generating function for the total number of
asymmetric peaks in all DAPs is 2x5 + 6x6 + 18x7 + 50x8 + 132x9 + O(x10).
Note that the sequence of coefficients does not appear in [23]. Figure 5 confirms
that there are 6 asymmetric peaks in all DAPs of length 6.
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We denote the total number of peaks, symmetric peaks, and asymmetric
peaks in all DAPs by p(n), s(n), and t(n), respectively. It is worth noting that
from Corollary 10 of [3], we have

p(n) ∼
√

5 − 2
√

πn
√

14
√

5 − 30

(
1 +

√
5

2

)2n

.

In this corollary we present asymptotic ratios for various peak counts in all
DAPs.

Corollary 2.6. An asymptotic expression for the ratio between the number of
symmetric peaks and the total number of peaks in all DAPs:

lim
n→∞

s(n)
p(n)

=
√

5 − 2 ∼ 0.236067977.

An asymptotic expression for the ratio between the number of asymmetric peaks
and the total number of all peaks in all DAPs:

lim
n→∞

t(n)
p(n)

= 3 −
√

5 ∼ 0.763932023.

An asymptotic expression for the ratio between the numbers of asymmetric and
the total number symmetric peaks in all DAPs:

lim
n→∞

t(n)
s(n)

=
√

5 + 1 ∼ 3.236068475.

2.1. A recursive relation for the number of DAPs

We use g(n) to denoted the number of DAPs in Dn. The classic proof for the
number of Dyck paths can be adapted to obtain a recurrence relation for g(n).
It is formally given in the Theorem 2.7.

Let Bn ⊂ Dn the set of all DAPs without valleys at a ground level, i.e.,
DAPs with no occurrence DkU , k ≥ 1, touching the x-axis. There is a bijec-
tion between Bn and Dn−1 by deleting the first North-East step (U -step) and
replacing the last South-East step of length a (Da-step) with a step Da−1 in
all paths in Bn. Notice that B3 = {U2D2} maps bijectively to D2 = {UD1},
while B2 = {UD1} is in bijection with D1 := {} (the empty set).

Theorem 2.7. For n > 3, we have

g(n) = g(n − 1) + g(n − 2) +
n−3∑

k=2

g(k)g(n − k − 1),
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anchored with the initial values g(1) = 0 and g(2) = g(3) = 1. Furthermore,
we have the closed form formula:

g(n) =
n−1∑

k=1

1
n − k

(
n − k

k

)(
n − k

k − 1

)
, n ≥ 2. (1)

Proof. Let us consider P ∈ Dn. Then P can be decomposed as either Q ∈ Bn,
or UD1R with R ∈ Dn−2, or QR with Q ∈ Bk+1 and R ∈ Dn−k−1 with
2 ≤ k ≤ n − 3 (this last decomposition is as in Fig. 4). Due to the above
bijection between Dn−1 and Bn, the DAPs satisfying the first two cases are
enumerated by g(n− 1)+ g(n− 2), and for a fixed k, 2 ≤ k ≤ n− 3, the DAPs
satisfying the third case are enumerated by g(k)g(n − k − 1). Varying k in the
set {2, 3, . . . , n − 3}, we obtain the desired result.

On the other hand, let G(x) be the generating function of the sequence
g(n). We have

G(x) = Fsp,ap(x, 1, 1) =
1 − x − x2 −

√
1 − 2x − x2 − 2x3 + x4

2x
.

If U(x) = G(x)/x, then U(x) = x(1 + (1 + x)U(x) + xU2(x)). Consider the
auxiliary function f(x, t) defined by f(x, t) = x(1+(1+ t)f(x, t)+ tf2(x, t)) =
x(Φ(x, t)), where Φ(u) = (1 + u)(1 + tu). From the Lagrange inversion, (see
[21] for instance), we have that

[xn]f(x, t) =
1
n

[un−1]Φ(u)n =
1
n

[un−1](1 + u)n(1 + tu)n

=
1
n

n−1∑

i=0

(
n

n − 1 − i

)(
n

i

)
ti, n ≥ 1.

Then g(n) = [xn]G(x) = [xn−1]U(x) = [xn−1]f(x, x). Comparing coefficients
we obtain that

g(n) = [xn−1]
∑

n≥1

1
n

n−1∑

i=0

(
n

n − 1 − i

)(
n

i

)
xn+i

= [xn−1]
∑

i≥0

∑

n≥0

1
n + i + 1

(
n + i + 1

n

)(
n + i + 1

i

)
xn+2i+1.

Setting h = n + 2i + 1, this implies

g(n) = [xn−1]
∑

i≥0

∑

h≥2i+1

1
h − i

(
h − i

h − 2i − 1

)(
h − i

i

)
xh

=
�n−2

2 	∑

i=0

1
n − 1 − i

(
n − 1 − i

i + 1

)(
n − 1 − i

i

)
.

�
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Figure 7. Decomposition of the trees in T

The first ten values of the sequence g(n) for n = 2, . . . , 11 are as follows:

1, 1, 2, 4, 8, 17, 37, 82, 185, 423.

The sequence g(n) has connections to various combinatorial structures,
such as generalized bracketings [12], peakless Motzkin paths [7], and zigzag
knight’s paths [6]. Additionally, recurrence relations of this type have been
studied and generalized by Stein and Waterman [25].

We give a probably new combinatorial interpretation in terms of binary
trees. An ordered binary tree is a rooted tree where each node is either a leaf
(with no children), or an internal node (with one or two left/right children).
For instance, there are five ordered binary trees with three nodes, and it is well
known that these trees with n nodes are counted by the n-th Catalan number
(see A000108). Let Tn be the set of ordered binary trees with n nodes where
(i) any right node has a left child, and (ii) any right node is sibling to a left
node. Let T be the set

⋃
n≥1 Tn. Any tree T ∈ T is either a simple root, or a

root with a left subtree T� ∈ T , or a root with a left subtree T� ∈ T paired
with a right subtree Tr with at least two nodes, see Fig. 7.

From this description of T , we easily deduce that Tn has the same cardi-
nality as Dn. Indeed, if T := T (x) is the generating function for the cardi-
nality of T with respect to the number of nodes, then the description induces
T = x + xT + xT (T − x).

Let us now exhibit the bijection between Dn and Tn. Given a path P ∈ Dn,
we can express it as a concatenation of subpaths of the form U tDd, t, d ≥ 1.
Initiating the process, let us create a root node r. Starting at r as the current
node, for the first U -step in P (reading from left to right), we add a new left-
child to the current node and move to the newly created leaf, which becomes
the new current node. We repeat this procedure for the t consecutive U -steps.
For each Dd-step, we create a right-child to the (d + k)-th ancestor (i.e., we
go back (d + k) times towards the root) where k is the number of ancestors of
the current node with a right child, or equivalently the number of ancestors of
out-degree 2). We then move to the newly created leaf (which becomes the new
current node). We repeat this procedure until we traverse entirely the path P ,
except the last down-step.
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The fact that a DAP does not contain two consecutive down-steps implies
that any right node has a left child. Due to the construction, any right node
is sibling of a left node, which ensures that the generated tree belongs to T .
With the above cardinality argument, this map is a bijection. See Fig. 8 for an
illustration of the bijection applied to all DAPs of length 6.

2.2. The total number of symmetric peaks

In this section, a recursive relation for the total number of symmetric peaks
in Dn is given. Let us denote by s∗(n) the total number of all first peaks that
are symmetric, excluding the symmetric peak Un−1Dn−1 of length n (i.e, the
path formed by a single peak). Additionally, let us use Δk to represent the
symmetric peak UkDk.

Using the symmetry construction of paths in Dn, we can show that the
total number of last symmetric peaks at ground level in Dn is equal to the
total number of first symmetric peaks in Dn, except for the peak Un−1Dn−1

of length n. If we include the path formed by a single peak, the total count
is given by s∗(n) + 1, for n ≥ 2. We state this fact formally in the following
lemma.

Lemma 2.8. If n > 1, then s∗(n) is given by

s∗(n) =
n−2∑

i=2

i−1∑

k=1

1
i − k

(
i − k

k

)(
i − k

k − 1

)
.

Proof. The total number of the first (resp., last) peaks that are symmetric
is counted by the total number of first (resp., last) peaks at a ground level.
Thus, this is counted by the total number of paths of the form ΔiP (resp.,
PΔi) where P is a DAP of length n− i−1 for 1 ≤ i ≤ n−3. Clearly, for i fixed
it is counted by the total number of paths in Dn−i−1; this is given by g(n−i−1)
(see Theorem 2.7). Varying i from 1 to n−3, we obtain the recurrence relation
s∗(n) =

∑n−2
i=2 g(i) for n > 4, with the initial values s∗(4) = 1 and s∗(n) = 0

for n < 4. This, together with Theorem 2.7, implies the desired formula. �

As stated in the introduction, our goal is to derive recurrence relations
using combinatorial arguments. Thus, we now present a recurrence relation
and its proof, which help us achieve this objective to some extent.

Theorem 2.9. The sequence s(n) satisfies the following recurrence relation for
n > 4

s(n) = s(n − 1) + s(n − 2) − 2s∗(n − 1) + g(n − 2) +
n−3∑

k=2

2g(n − k − 1)s′(k),

where s′(k) = s(k)−s∗(k), and with initial values s(2) = s(3) = 1 and s(4) = 3.
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Proof. Notice that any non-empty path in Dn can be decomposed as QR where
Q ∈ Bk+1 and R ∈ Dn−k−1 for k ≥ 1 (see Fig. 4).

To count the number of symmetric peaks in a path of the form QR, we
observe that it is given by the sum of the number of symmetric peaks in Q
and the number of symmetric peaks in R. The first is found multiplying the
number of symmetric peaks in Bk+1 by the total number of path in Dn−k−1.
We distinguish four cases.

(1) If k = 1, then we have Q = Δ1 ∈ B2. The total number of peaks derived
from Q = Δ1 is g(n − 2) (equal to the number of paths in Dn−2). There-
fore, adding g(n − 2) with the total number of symmetric peaks counted
over all paths R ∈ Dn−2, we obtain that there are s(n − 2) + g(n − 2)
symmetric peaks in the paths lying in this case.

(2) If k = 2, then using a similar argument as for k = 1, there are s(n − 3) +
g(n − 3) symmetric peaks counted over all paths lying in this case.

(3) If k = n − 1, then the number of symmetric peaks derived from Q ∈
Bn−1+1 can be counted using s(n − 1) (by the bijection given above).
However the first and the last peaks that are symmetric in all paths in
Dn−1 are not symmetric peaks in Bn, so we have to subtract them from
s(n−1). We can use s∗(n−1) for this purpose. Thus, the total number of
symmetric peaks counted over all paths in this case is s(n−1)−2s∗(n−1).

(4) If 2 < k < n − 2, then the number of symmetric peaks derived from
Q ∈ Bk+1 can be counted using s(k) − 2s∗(k). (The shaded peaks in
Fig. 3 shows the part that we need to subtract by 2s∗(n− 1).) Therefore,
the total number of symmetric peaks counted over all paths of the form
QR, Q ∈ Bk+1, R ∈ Dn−k−1, is given by (s(k) − 2s∗(k))g(n − k − 1) +
s(n − k − 1)g(k). By varying k from 3 to n − 3 and adding the special
three cases, we obtain the desired result.

This completes the proof. �

Let us define p(n) as the total number of peaks in Dn. Using a binomial
expression, we can write this sequence as:

p(n) =
n∑

k=0

(
k − 1
2k − n

)(
k

2k − n + 1

)
.

A proof of this result, using generating functions, can be found in [3, p. 10].
Alternatively, by modifying the proof of Theorem 2.9 —by removing the use
of s∗(k)— we can derive a recurrence relation that counts the total number of
peaks in Dn, that is, for n ≥ 5

p(n) = p(n − 1) + p(n − 2) + g(n − 2) + 2
n−3∑

k=2

p(k)g(n − k − 1),
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with the initial values p(2) = p(3) = 1 and p(4) = 3. It is important to note
that a recurrence relation for the number of asymmetric peaks in Dn can be
obtained by subtracting s(n) from p(n).

3. Counting symmetric weight

Recall that the weight of a peak is the difference between the maximum and
minimum ordinates, which is also equal to the max{k, �} whenever the peak is
UkD�. For a symmetric peak UkDk, its weight is k. Let symw(P ), called the
sum of symmetric weights, be the sum of weights of all symmetric peaks in
P . As an illustration, the symmetric peaks of the path depicted in Fig. 1 have
weights 1, 2, 3, and 1, respectively. Thus, symw(P ) = 7.

In this section, we present several results related to the sum of weights of
symmetric peaks in Dn. Firstly, we derive a generating function in two variables
that counts the sum of weights of all symmetric peaks in Dn. Secondly, we
establish a recursive relation for the sum of weights of all symmetric peaks in
Dn. We start by introducing the generating function W (x, q) of all DAPs with
respect to their length and sum of symmetric weights, defined as follows:

W (x, q) =
∑

P∈D
x|P |qsymw(P ).

Using the same decomposition as in the proof of Theorem 2.1, we derive the
following result.

Theorem 3.1. The generating function W (x, q) for the number of DAPs with
respect to the length and the sum of symmetric weights is

W (x, q) =
(1 − x)(1 − qx)

(
1 − qx − (1 + q)x2 + (2 + q)x3 − qx4 −

√
w(x, q)

)

2x(1 − x(1 + q) + x2)2
,

where w(x, q) is defined as:

w(x, q) = (1 − x)(1 − (3 + 2q)x + (1 + q)(3 + q)x2

−(5 + q2)x3 + 2(2 + 2q − q2)x4 − 2(2 + q + q2)x5 + q(4 + q)x6 − q2x7).

The first terms of the Taylor expansion are as follows:

1 + qx2 + q2x3 + (q2 + q3)x4 + (1 + 2q3 + q4)x5

+(3 + q3 + 3q4 + q5)x6 + O(x7).

All DAPs of length 6 are displayed in Fig. 9, with their corresponding sym-
metric weights highlighted in boldface in the previous expansion.

The total symmetric weight of Dn is defined as the sum of the symmet-
ric weights over all paths in Dn, and it is denoted by w(n). By calculating
∂q(W (x, q))|q=1, we can obtain the following two corollaries.
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Corollary 3.2. The generating function for the total symmetric weight in all
DAPs is given by

x
(
−1 + 2x + 2x2 + 3x3 − 2x4 + (1 − x)(1 + 2x)

√
1 − 2x − x2 − 2x3 + x4

)

2(1 − x)2
√

1 − 2x − x2 − 2x3 + x4
,

and an asymptotic expression for the n-th coefficient is

5
√

10 − 11
√

2

4
√

πn
√

−15 + 7
√

5
·
(

1 +
√

5
2

)2n

.

The Taylor expansion of the generating function is

x2 + 2x3 + 5x4 + 10x5 + 20x6 + 41x7 + 86x8 + 187x9 + O(x10).

It worth to mention that the sequence of coefficients does not appear yet in
[23].

Let us use w∗(n) to denote the total sum of symmetric weights of all first
peaks that are symmetric over all paths in Dn, except for the path UnDn.
The weight sum of all first peaks that are symmetric, including the weight of
the single peak of length n, is given by w∗(n) + (n − 1). Using the symmetry
construction of paths in Dn, we can observe that the total weight of the first
peaks that are symmetric in Dn is equal to the total weight of the last peak
at a ground level that is symmetric in Dn. It is worth noting that w∗(n) also
counts the total height of all first peaks that are symmetric in Dn, except for
the path formed by the single peak. Recall that the height of an occurrence
UkD� in a path is the maximal ordinate of its points.

Lemma 3.3. If n > 1, then w∗(n) is given by

w∗(n) =
n−2∑

i=2

n−i−1∑

k=1

i − 1
n − i − k

(
n − i − k

k

)(
n − i − k

k − 1

)
.

Proof. For a given i ≥ 1, the sum of the weights (over all DAPs in Dn) of all
first (resp., last) peaks Δi is i multiplied by the number of DAPs of length
n − i − 1, which is i · g(n − i − 1). Varying i in the set {1, 2, . . . , n − 3}, we
obtain the recurrence relation w∗(n) =

∑n−2
i=2 (i − 1)g(n − i) for n > 4, with

the initial values w∗(4) = 1 and w∗(n) = 0 for n < 4.
Using Theorem 2.7, we have the binomial expression for w∗(n) given in the

statement of this lemma. �

Theorem 3.4. For n ≥ 4, we have

w(n) = w(n − 1) + w(n − 2) − 2w∗(n − 1) + 1 +
n−3∑

k=1

2w′(k)g(n − k − 1),

where w′(k) = w(k)−w∗(k)+ 1
2 , and the initial values are w(1) = 0, w(2) = 1,

and w(3) = 2.
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Proof. Consider any non-empty path in Dn, which can be decomposed as QR
where Q ∈ Bk+1 and R ∈ Dn−k−1 for k ≥ 1 (it can be seen in Fig. 4). We
consider four cases.

(1) If k = 1, then Q = Δ1 and the total symmetric weight of all symmetric
peaks (over Dn) derived from Q = Δ1 is g(n − 2). Adding this to the
total symmetric weight of all paths of the form R ∈ Dn−2, we obtain that
w(n−2)+g(n−2) is the total symmetric weight of all paths in this case.

(2) If k = 2, then, with the same argument as for the previous case, the total
symmetric weight of all paths in this case is w(n − 3) + 2g(n − 3).

(3) If k = n − 1, then the total symmetric weight of Q ∈ Bn−1+1 is given by
the total symmetric weight of Dn−1 which is w(n − 1). However, there
are two sub-cases to consider in this counting: firstly, the weight of the
single peak in Dn−1 is n − 1 but in Bn it is n, so we must add one to
the counting; secondly, the first and the last peaks that are symmetric in
all paths in Dn−1 cannot be counted, as they are not symmetric peaks
in Bn, so we have to subtract them from w(n − 1). We use w∗(n − 1)
to adjust for these differences. Thus, the total symmetric weight of Bn is
w(n − 1) − 2w∗(n − 1) + 1.

(4) If 3 ≤ k ≤ n−3, then the total symmetric weight derived from Q ∈ Bk+1

can be counted using w(k) − 2w∗(k) + 1. Therefore, the total symmetric
weight for QR (see Fig. 3) is given by (w(k) − 2w∗(k) + 1)g(n − k − 1) +
w(n − k − 1)g(k). By varying k from 3 to n − 3 and adding the special
three cases, we obtain the desired result.

This completes the proof. �

4. Counting symmetric height

In this section, we present a method for counting the sum of heights of peaks
in Dn, using a generating function expressed as a continuous fraction. Addi-
tionally, we provide recursive relations to compute both the sum of heights of
all peaks and the sum of heights of symmetric peaks in Dn.

Let h(n) and hs(n) denote the sums of heights of all peaks and all symmetric
peaks, respectively, in the set Dn of DAPs of length n. The height of a peak
is defined as the y-coordinate of its highest point measured from the ground
level. We use sumh(P ) to denote the sum of heights of all peaks in the path
P , and peak(P ) to denote the number of peaks in the path P .

Let R be the set of all classical Dyck paths. We define the generating
function R(x, p, q) over all classical Dyck paths

R(x, p, q) =
∑

P∈R
x|P |/2ppeak(P )qsumh(P ).
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Deutsch [11] proved that this generating function satisfies the functional equa-
tion

R(x, p, q) = 1 + x(R(x, qp, q) − 1 + pq)R(x, p, q). (2)

Let Q(x, q) be the generating functions of all DAPs with respect to the length
and the sum of the heights. That is,

Q(x, q) =
∑

P∈D
x|P |qsumh(P ).

Theorem 4.1. An expression for generating function of Q(x, q) is given by the
continued fraction

Q(x, q) =
1

1 + x − qx2 −
x

1 + x − q2x2 −
x

1 + x − q3x2 −
x

. . .

.

Proof. Notice that each peak in a Dyck path has to be counted as a down
step in a DAP. Therefore, we have the relation Q(x, q) = R(x, x, q). From the
functional equation (2), we obtain

Q(x, q) = R(x, x, q) = 1 + x(R(x, qx, q) − 1 + qx)R(x, x, q).

Therefore, we have

Q(x, q) =
1

1 − x(R(x, qx, q) − 1 + qx)
=

1
1 + x − qx2 − xR(x, qx, q)

.

Iterating this expression yields the desired result. �

The first terms of the continued fraction are as follows:

1 + qx2 + q2x3 + (q2 + q3)x4 + (2q3 + 2q4)x5

+(q3 + 3q4 + 3q5 + q6)x6 + (3q4 + 6q5 + 5q6 + 2q7 + q8)x7 + O(x8).

Theorem 4.2. The generating function for the sum of the heights of all peaks
in Dn is

H(x) =
∑

n≥0

h(n)xn =
x2

(1 − 3x + x2)(1 + x + x2)
.

Moreover,

h(n) =
n∑

k=0

1
2

(
2n − 2k

2k − 1

)
,



J.-L. Baril et al. AEM

and an asymptotic for the n-th coefficient is
√

5
20

·
(

1 +
√

5
2

)2n

.

Proof. We can use Theorem 4.1 to derive an expression for the generating
function H(x) as follows:

H(x) = ∂q(Q(x, q))|q=1 =
∑

�≥1

�x�+1

M2�(x)
=

x2M2(x)
(x − M2(x))2

, (3)

where

M(x) = 1 + x − x2 −
x

1 + x − x2 −
x

1 + x − x2 −
x

. . .

= 1 + x − x2 − x

M(x)
.

Note that we can express M(x) as

M(x) = 1/2
(
1 + x − x2 −

√
1 − 2x − x2 − 2x3 + x4

)
.

Substituting this expression for M(x) into (3), we obtain the desired expression
for H(x).

To obtain the combinatorial sum, we can manipulate the generating func-
tion using standard techniques. �

Upon comparing this generating function with the sequence defined in
A182890, it is evident that they are identical.

Theorem 4.3. The sequence h(n) satisfies the following recurrence relation for
n ≥ 4:

h(n) = h(n − 2) + h(n − 1) + p(n − 1) + g(n − 2) +
n−3∑

k=2

(2h(k) + p(k)) g(n − k − 1),

with initial values h(2) = 1 and h(3) = 2.

Proof. Consider any non-empty path P in Dn, which can be decomposed as
P = QR where Q ∈ Bk+1 and R ∈ Dn−k−1 for some k ≥ 1. We distinguish
three cases.
(1) If k = 1, then Q = Δ1, and the sum of the heights of these peaks (over

all paths in Dn) is the cardinality of Dn−2, which is g(n − 2). Adding
this to the sum of the heights of all peaks in paths of the form R ∈ Dn−2

gives us that h(n − 2) + g(n − 2) is the sum of the heights of peaks of all
paths in this case.
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(2) If k = n − 1, then the sum of the heights of all peaks in Bn−1+1 = Bn is
given by the sum of the heights of all peaks in Dn−1 plus the total number
of its peaks. This gives us that the sum of the heights of all peaks of all
paths in this case is h(n − 1) + p(n − 1).

(3) If 2 ≤ k ≤ n − 3, then the sum of the heights of all peaks in Bk+1 can
be counted using g(n − k − 1)(h(k) + p(k)). Therefore, the sum of the
heights of all peaks of all paths in this case (with k fixed) is given by
h(n − k)g(k) + g(n − k − 1)(h(k) + p(k)). By varying k from 2 to n − 3,
we obtain the recurrence relation in the statement of the theorem.

This completes the proof. �
The first ten values of the sequence h(n) for n = 2, . . . , 11 are as follows:

1, 2, 5, 14, 36, 94, 247, 646, 1691, 4428.

We use hs(n) to represent the sum of the heights of all symmetric peaks of
Dn.

Theorem 4.4. The sequence hs(n), which represents the sum of the heights
of all symmetric peaks in Dn, can be described by the following recurrence
relation:

hs(n)=hs(n − 2)−hs(n − 1)+g(n − 2)+2h′
s(n − 1)+2

n−3∑

k=2

h′(k)g(n − k − 1),

where h′
s(k) = hs(k) + 1

2s(k) − s∗(k) − w∗(k) for n ≥ 4, with initial values
hs(2) = 1 and hs(3) = 2.

Proof. The proof follows similar steps as the proof of Theorem 3.4, but we
need to take into account the height of the peak measured from the ground.

Consider any non-empty path in Dn, which can be decomposed as QR
where Q ∈ Bk+1 and R ∈ Dn−k−1 for k ≥ 1. We distinguish three cases.
(1) If k = 1, then the sum of the heights of all symmetric peaks in all these

paths is hs(n − 2) + g(n − 2).
(2) If k = n − 1, then the sum of the heights of all symmetric peaks in all

these paths is given by hs(n − 1) − 2w∗(n − 1) + s(n − 1) − 2s∗(n − 1).
(3) If 3 ≤ k ≤ n−3, then the sum of the heights of all symmetric peaks in all

paths in Bk+1 is (hs(k) − 2w∗(k) + s(k) − 2s∗(k))g(n − k − 1). Therefore,
the sum of the heights of all symmetric peaks in all paths in this case
(with k fixed) is given by (hs(k) − 2w∗(k) + s(k) − 2s∗(k))g(n − k − 1) +
w(n − k − 1)g(k). By varying k from 3 to n − 3 and adding the special
two cases, we obtain the desired result.

This completes the proof. �
The first ten values of the sequence hs(n) for n = 2, . . . , 11 are as follows:

1, 2, 5, 10, 20, 42, 91, 206, 485, 1174.
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5. Symmetric and asymmetric peaks in non-decreasing DAP

In 1997, Barcucci et al. [2] introduced the concept of non-decreasing Dyck
paths. Later in 2001, Prodinger [24] studied non-decreasing Dyck paths in
relation to Elena trees. In 2003, Deutsch and Prodinger [10] provided bijec-
tions between non-decreasing Dyck paths, directed column-convex polyomi-
noes, Elena trees, and ordered trees of height at most three. In 2015, Flórez et
al. [8] used generating functions to count the number of peaks, pyramid weight,
and number of valleys in all non-decreasing Dyck paths of a given length. Re-
cently, there has been significant research on the concept of non-decreasing
paths, see for example, [3,9,14,17].

In this section, we first focus on the set ND of non-decreasing DAPs, that
is, DAPs where the sequence of the minimal ordinates of the valleys DkU ,
k ≥ 1, (taken from left to right) is non-decreasing. We consider the trivariate
generating function

Gsp,ap(x, y, z) =
∑

P∈ND
x|P |ysp(P )zap(P ),

where the coefficient of xnykz� is the number of non-decreasing Dyck paths
with air pockets of length n with k symmetric peaks and � asymmetric peaks.
Corollary 2.3 counts the total number of DAPs formed by symmetric peaks
(with no asymmetric peaks). The same result holds here. That is, the total
number of non-decreasing DAPs that consist solely of paths with peaks located
at a ground level Fn−1 for n > 1.

We summarize our results in a table at the end of this section.

Theorem 5.1. The generating function Gsp,ap(x, y, z) for the number of non-
decreasing DAPs with respect to the length and the numbers of symmetric and
asymmetric peaks is

1 − 3x + (3 − y)x2 − (1 − 2y + z)x3 − (y − z)x4 + x5z2

(1 − x − x2y)(1 − 2x − x2(−1 + y) + x3(y − z))
.

Proof. To simplify notation, we set G = Gsp,ap(x, y, z). Let P be a nonempty
non-decreasing DAPs. We distinguish the following cases.
(1) If P = UaDaQ, a ≥ 1, where Q is a DAP (possibly empty), then the g.f.

is x2

1−xyG.

(2) If P = UUaDaQU bDb+1, for a, b ≥ 1, where Q is a DAP, then necessarily
Q is empty or of the form Q = Ua1Da1U

a2Da2 · · · UakDak
, for some

k ≥ 1, and ai ≥ 1 for i ≤ k. See Fig. 10 for an illustration. The generating
function for this case is given by

x
x2

1 − x
z

1
1 − x2

1−xy

x2

1 − x
z =

z2x5

(1 − x − x2y) (1 − x)
.
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Figure 10. Decomposition of case (2)

(3) If P = UUaDaQ̄, for a ≥ 1, where Q is not empty and does not start or
end with a symmetric peak, and Q̄ is obtained from Q by increasing by
one the size of its last down-step. The g.f. for this case is xz x2

1−xB, where
B is the generating function for non-empty non-decreasing DAPs that do
not end with a symmetric peak. Considering the complement, we easily
have B = G − 1

1− x2
1−xy

.

(4) If P = UQ̄ where Q is not empty and does not end and start with a
symmetric peak, and Q̄ is obtained from Q by increasing by one the size of
its last down-step. The g.f. for this case is xC, where C is the generating
function for non-empty non-decreasing DAPs that do not start or end
with a symmetric peak. We easily have C = B · (1 − x2

1−xy).
Summarizing all these cases, we obtain the following functional equation:

G = 1 +
x2

1 − x
yG +

z2x5

(1 − x − x2y) (1 − x)

+
x3z

1 − x

(
G − 1

1 − x2y
1−x

)
+ x

(
G − 1

1 − x2y
1−x

)(
1 − x2y

1 − x

)
,

which induces the result. �

5.1. Increasing DAPs

Let I be the set of strictly increasing DAPs, which are non-decreasing DAPs
where consecutive valleys cannot have the same ordinate. Notice that any
path in I has one of the following three forms: (i) a non-decreasing DAP
without symmetric peaks, (ii) a symmetric peak followed by a non-decreasing
DAP without symmetric peaks, or (iii) a symmetric peak followed by another
symmetric peak.

Now, let us consider the trivariate generating function

Hsp,ap(x, y, z) =
∑

P∈I
x|P |ysp(P )zap(P ),

where the coefficient of xnykz� is the number of increasing Dyck paths with
air pockets of length n having k symmetric peaks and � asymmetric peaks.
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Based on the three previous forms of an increasing DAP, we can deduce the
following.

Theorem 5.2. The generating function Hsp,ap(x, y, z) for the number of in-
creasing DAPs with respect to the length and the numbers of symmetric and
asymmetric peaks is

Hsp,ap(x, y, z) = G(x, 0, z)
(

1 +
x2y

1 − x

)
+

(
x2y

1 − x

)2

.

The first terms of the Taylor expansion are

1 + x2y + x3y + (y2 + y)x4 + (2y2 + z2 + y)x5 + (3y2 + 3z2 + y)x6 + O(x7).

The g.f. for the number of increasing DAPs is

H(x, 1, 1) =
(1 − x)2(1 + x2)
1 − 2x + x2 − x3

.

The Taylor expansion of the given expression is

1 + x2 + x3 + 2x4 + 4x5 + 7x6 + 12x7 + 21x8 + 37x9 + O(x10),

where the sequence of coefficients of xn corresponds to A005251 in [23]. No-
tice that the increasing DAPs of length n are in bijection with the Dyck
path of semi-length n − 1, subject to the condition that the vector of valleys
(ν1, ν2, . . . , νk) satisfies νi+1 − νi ≥ 2, as shown in [19].

We can adapt the same proofs used in the previous sections to non-decreasing
DAPs. Therefore, we will only provide a summary of the results without in-
cluding the proofs.
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