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ABSTRACT. In this paper, we continue the study of four subfamilies of Motzkin paths. Two
of these subfamilies are well-established in the literature and are known as Motzkin paths
with air pockets of the first kind and Motzkin paths with air pockets of the second kind.
The remaining two subfamilies extend the concept of non-decreasing paths to the first two
families mentioned earlier.

Within these four subfamilies, we define two distinct type of subpaths, namely symmetric
peaks and asymmetric peaks. Our analysis focuses on understanding the distribution of these
symmetric and asymmetric peaks across these subfamilies of paths.

To facilitate this analysis, we present trivariate generating functions. These functions
take into consideration parameters such as path length and the numbers of symmetric and
asymmetric peaks. These generating functions allow us to calculate, for instance, the total
number of symmetric and asymmetric peaks for paths of specific lengths. Furthermore, we
conduct an asymptotic analysis of the relationship between these two quantities.

Dyck path with air pockets, Motzkin paths, symmetric peak, popularity
05A15, 05A19.

1. INTRODUCTION

A Motzkin path with air pockets of the first kind (MAP1) is a lattice path in Z%, that
starts at the origin, ends on the z-axis, and consists of steps U, Dy, and H. Furthermore,
it adheres to the condition that two consecutive down-steps cannot be consecutive (here, we
assume that & > 1 in this introduction). Similarly, a Motzkin path with air pockets of the
second kind (MAP2) is a lattice path in Z2, that starts at the origin, ends on the z-axis, and
consists of steps U, Dy, and H. Additionally, in a MAP2, every step H or D, is immediately
followed by an up-step. We denote the sets of all MAP1 and MAP2 paths as M! and M?,
respectively. These two path families were originally introduced by Baril and Barry (see, for
example, [6]).

A walley is a subpath of the form D,U, HU, or Dy,H. A subpath in the form of U*D,
is called a symmetric peak if it cannot be extended to a subpath in the form of U**'Dj,.
An asymmetric peak is an occurrence of UDy that cannot be included in an occurrence of
a symmetric peak. We use sp(P) (and ap(P)) to denote the number of symmetric (and
asymmetric) peaks in the path P.

A path of the form of MAP1 or of the form of MAP2 is called non-decreasing if the sequence
of ordinates of valleys DU, D, H, HU (considered from left to right) is non-decreasing.
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FIGURE 1. Symmetric and asymmetric peaks of a MAP1.

It is worth noting that MAPs without horizontal steps are referred to as Dyck paths with
air pockets. This term was introduced in a recent paper by Baril et al. [4]. As mentioned in
their work, these paths also correspond to a stack evolution with (partial) reset operations,
where consecutive resets are not allowed (refer to [13] for more details). Recently, Prodinger
[14] used the kernel method to study the partial Dyck paths with air pockets.

In a separate study by Baril et al. [3], the authors explored the prevalence of symmetric
and asymmetric peaks in these paths and provided asymptotic approximations for their
occurrences.

Furthermore, in a related work [5], these paths were further generalized by allowing them
to extend below the z-axis, leading to the concept of grand Dyck paths with air pockets.
The paper presents enumerative results for these paths, considering parameters such as path
length and restrictions on the minimum and maximum ordinates reached.

It is worth mentioning that MAP1 is enumerated by the sequence A114465, while MAP2
corresponds to the sequence of Motzkin numbers (as seen in A001006). These sequences were
originally derived using generating functions. However, in our paper, we employ recurrence
relations to achieve the same counting results.

In this paper, we center our focus on analyzing the distribution of symmetric and asym-
metric peaks within various classes of Motzkin paths with air pockets, encompassing those
of both the first and second kinds, including non-decreasing paths. To accomplish this,
we present trivariate generating functions that account for the path’s length, the count of
symmetric peaks, and the number of asymmetric peaks.

Through the utilization of these generating functions, we are able to determine, for in-
stance, the cumulative count of sp(P) (as well as ap(P)) for paths of specific lengths. Addi-
tionally, we delve into an asymptotic analysis to explore the relationship between these two
quantities.

For the sake of simplicity, we adopt the abbreviation ‘g.f.” to represent ‘generating func-
tion’.

The concept of symmetric and asymmetric peaks was first introduced by Asakly in 2018
in the context of words [I1]. Since then, several related studies have been published on
this subject. For instance, Flérez and Ramirez [11] explored the concept of symmetric and
asymmetric peaks for Dyck paths. The concept was further extended to non-decreasing Dyck
paths by Elizalde et al. [8] and Flérez et al. [10], to Motzkin paths by Flérez and Ramirez
[9], and to partial Dyck paths by Sun et al. [16]. Elizalde also contributed other significant
findings on Dyck paths [7]. In some of these papers, the authors referred to these objects as

‘symmetric pyramids’ instead of ‘symmetric peaks’.
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2. SYMMETRIC AND ASYMMETRIC PEAKS IN MAP1

In this section, our research is focused on Motzkin paths with air pockets of the first
kind, denoted as M?!. We introduce a trivariate generating function that depends on three
key parameters: path length, the count of symmetric peaks, and the number of asymmetric
peaks. As a corollary to this power series, we derive both a generating function and a
closed-form expression for the total number of symmetric peaks. Additionally, we conduct
an asymptotic analysis to explore the ratio of the number of symmetric peaks to the total
number of peaks for paths of specific lengths. The same analysis is performed for asymmetric
peaks. Towards the conclusion of this section, we present a recursive relation for counting
the number of paths in M! with a given length.

Consider the generating function with the parameters of length, symmetric peaks, and
asymmetric peaks:

Mipap(2,y, 2) = Z x|P|y5P(P)Zap(P)'
Pem?
We establish the following theorem:

Theorem 2.1. The generating function Mg, op(z,y, z) for the number of MAP1 with respect
to the length and the numbers of symmetric and asymmetric peaks is given by:

2(1 —x)
1—3:—:v2y—:r3(y—2z)+\/(1—x—x2y—$3(y—22))2—R
where R =4z(1 — 2z — 2%(y — 2))(1 — 2z + 22(2 —y + 2) — 23).

9

Proof. We denote the generating function as M = Mj, (2, y,2). Now, let us consider
various cases:

Case (1). If the path, denoted as P, is of the form H(Q), where @) is another MAP1, then
the generating function for this case is simply =M.

Case (2). If the path P is of the form U*D,Q (where a > 1), and @ is a MAP1 (see Figure
2, left-hand side), then the generating function for this case is %yM )

Case (3). When P is of the form P = UU*D,QU’Dy 1 R (with a,b > 1) and both Q and R
are MAP1 (see Figure 2, right-hand side), the generating function becomes

x? x? x°

T zM M= —"— 22 M2,
l—z 11—z (1 —x)?

(2): P=UD,Q (3): P=UUD,QU’Dy1R

FIGURE 2. Decomposition of cases (2) and (3).
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Case (4).

Case (5).

Case (6).

If the path P takes the form of UU*D,QR (with a > 1) and both @ and R are
MAP1, with @ ending in a down-step and not concluding with a symmetric peak,
and @ being an adjusted version of @) after increasing the size of its last down-step
by one, the generating function is

112

x zBM,

11—z
where B represents the generating function for nonempty MAP1 paths that do
not end with a symmetric peak nor with a horizontal step. Considering the
complement, we easily obtain B =M — 1 — %yM —xM.

If the path P is of the form UU*D,QQHDR (with a > 1) and both @ and R are
MAP1 (see Figure 3 left-hand side), the generating function takes the shape of

$2

T 22 M2,

1—=zx

When P has the form of UQU*D, 1 R (with a > 1) and both @ and R are MAP1,
with @ not starting with a symmetric peak (see Figure 3, right-hand side), the
generating function becomes

2

X
MB
TP

2,

where B’ denotes the generating function for nonempty MAP1 paths that do
not start with a symmetric peak. Considering the complement, we have B’ =
M—1—ZyM.

(5): P=UUD,QHDR (6): P=UQU"Dyy1 R

Case (7).

Case (8).

FIGURE 3. Decomposition of cases (5) and (6).

If the path P takes the form of UQR, where both Q and R are MAP1, with @
being nonempty, ending with a down-step, not starting or ending with a symmetric
peak, and @ being an adjusted version of @, after increasing the size of its last
down-step by one, see Figure 4. So, the generating function for this case given by
xC'M, where C represents the generating function for nonempty MAP1 paths that
end with a down-step and do not start or end with a symmetric peak. Considering
the complement, we deduce C' = B’ — %B' —xz(B +1).

In the final case, if the path P is of the form UQH DR where both () and R are
MAPI1, and @) does not start with a symmetric peak, see Figure 4, the generating

function becomes x*(B’ + 1) M.
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(7): P=UQR (8): P=UQHDR

FIGURE 4. Decomposition of cases (7) and (8).

Summing up these cases, we derive the following functional equation:

2 5 3 2

X X X X
M=1+zM+ ——yM+ ———22M? M(M —1-— M —xM
+aM+ —y +(1—x)22 t1 2 ( Y M)+
5 3 2
+ My EE B raM (B - 2B —w(B 1)) + 2B + 1M,
1—=x 1—=x 1—=x
which leads to the desired result. ]

The first terms of the Taylor expansion of M are as follows:

1+z+ (1+y)2* + (By+2)2° + (y* + 6y + 2 + 5)z*+
(5y* + 2% + 12y + 62 + 12)2° + O(a").

In Figure 5, the MAP1 paths of length 4 are displayed, with their corresponding weights
highlighted in boldface in the previous expansion.

xty xtz

z4y2 z4y z4y I4 z4y z4y

*-———0—0

4

FIGURE 5. The MAP1 of length 4 and their contribution in Mg, ,(x,y, 2).

Corollary 2.2. The generating function for the number of MAP1 paths that avoid symmetric
and asymmetric peaks is given by:

2
1+1— 4z + 422 — 423
5

M(z,0,0) =



The Taylor expansion of this generating function yields: 1+ x + 22 + 223 + 5a* + 1225 +
2929 + 7327 + 1902® + 5052° + O(z'?).

Remarkably, the coefficients in this sequence correspond to A152171 in [15], which counts
Dyck paths of semi-length n without peaks at height 2 (mod 3) and valleys at height 1
(mod 3).

From the formulas provided in A152171 and A025265, we can determine the number of
MAP1 paths of length n that avoid symmetric and asymmetric peaks. Hence, we obtain the
expression:

n { n—f k+1 j k + 1 n—0—i ik
SySSal, 2 ) e

(=0 k=0 i=0 j=0 J J

where C, represents the kth Catalan number.

Corollary 2.3. The generating function for the number of MAP1 paths that avoid symmetric
peaks is given by:

2(1 —x)

M(x,0,1) = .
( ) 1—2+223+ /(1 —2)(1 — 5z + 822 — 1223 + 8z — 8zP)

The Taylor expansion of this generating function is as follows:
142+ 2% +22° + 62* + 192° + 582° + 17327 + 5192° + 158527 + O(2'?).
It is worth noting that this sequence of coefficients does not appear in [15].

Corollary 2.4. The generating function for the number of MAP1 paths that avoid asym-
metric peaks is given by:

2(1 —x)
1—z—a22 =23+ /(1 —2)(1 -5z + 622 — 223 + 2 + 325)

M(z,1,0) =

The Taylor expansion of this generating function is as follows:
1+ 2+ 22 + 5% + 122" + 292° + 732° + 19027 + 5082° + 13912” + O(2'°).

This sequence of coefficients does not appear in [15].

To find the total number of symmetric peaks and asymmetric peaks in all MAP1 paths,
we calculate 0, (M (z,y,1))|y=1 and 0,(M(x, 1, 2))|.,=1. This yields two generating functions
that we formally state in the following two corollaries.

Corollary 2.5. The g.f. for the total number of symmetric peaks in all MAPI is given by:
20%(1 — 3z + 22 — 32% + (1 4+ 2)VR)
(1 —2)VR(1 — 22+ VR)? ’
where R = 1 —4a +22% — 423 + 2. An asymptotic expression for the n-th coefficient is given
by:

2+v3)"
3y/212 + 7V/3)mn
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The Taylor expansion of this generating function is
2% + 32° + 82 + 222° + 642° + 19627 + 6252° + 205327 + O(2™).

It is important to note that this sequence of coefficients is not found in [15].

Corollary 2.6. The g.f. for the total number of asymmetric peaks in all MAP1 is
47%(1 — z + 222 + VR)
(1—2)VR(1 — 22+ VR)?
where R = 1 — 4z 4 22% — 423 +2*. An asymptotic expression for the n-th coefficient is given
by:

(2 +/3)"(—17 + 10V/3)
6\/2(—12 +7v/3)mn
The Taylor expansion of this generating function is
ot + 82° + 382° + 1542”4 5902° + 22042” 4+ O(2').

It is important to note that this sequence of coefficients is not found in [15].
Let pj(n) represent the total number of peaks in all MAP1 paths of length n. From
Corollaries 2.5 and 2.6 we can approximate pi(n) as follows:

(24 V3)" (2\/(—12 +7V3)m — (17 — 10v/3)4/ (12 + 7\/§)7r>
pl(n) ~ 6\/%7‘(‘ .

Now, let s1(n) and t1(n) denote the numbers of symmetric and asymmetric peaks, respec-
tively, in all MAP1 paths of length n. We can derive the following asymptotic ratios.

Corollary 2.7. The asymptotic for the ratio between the number of symmetric peaks and
the number of all peaks in all MAP1 is

1i si(n) 2\/<_12 V)
n—o0 py(n) 2\/(_12 +7V3)m — (17 = 10v/3)/ (12 + TV/3)

The asymptotic for the ratio between the number of asymmetric peaks and the number of all
peaks in all MAP1 is

) (17 +10V3)4/ (12 + TV3)7
n—oo p1(n) 2\/(_12+7\/§)7r+ (=17 + 10\/5) (12+7\/§)7T

The asymptotic for the ratio between the numbers of asymmetric and symmetric peaks in all
MAP1 s

~ (0.309401077.

~ 0.690598923.

lim f1(n)
n—oo 81 (n)

We denote the set of paths of length n in M! as M}, and we use m;(n) to represent
the cardinality of M}. Additionally, let B, C M} denote the subset of paths that do not
have valleys at ground level and do not contain sub-paths of the form H at ground level.

7
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Essentially, these are MAP1s without sub-paths of the form H and D,U that touch the
r-axis, where k > 1.

Lemma 2.8. Forn > 3, we establish a bijection between By1 and (M} UM;_,) \ M;_,.

Proof. The set ./\/l}C can be partitioned into three disjoint sets: Ay, By, and Cj. In Ay we
include all paths where the last step D, satisfies a > 1. Bj, comprises all paths of the form
PHH, where P € M,_,. Finally, Cy, = M}, \ (A, U By).

By adding an initial north-east step and replacing the last South-East step of length a
(D,-step) with a step D, in all paths in Ay, we obtain a set W4 C Bgyi. Similarly, by
adding an initial north-east step and replacing the last horizontal step H with a step D; in
all paths in By, we obtain a set Wy C Byy;.

Notably, W4 UWpg = Bi.1. Consequently, no path in C}, gives rise to a path in By;. This
construction establishes the bijection between Byy1 and (M} UM;_,) \ M;_;. O

Theorem 2.9. For n > 3, we have
n—2

mi(n) =Y (ma(k) = ma(k — 1) + mq(k — 2))ma(n — k — 1) + 3my (n — 3) + 2my (n — 1),
k=3

anchored with the initial values my(1) =1, my(2) = 2, and m1(3) = 5.

Proof. Let us consider a path P € M. Then P can be decomposed as either HR,, 1, Ry,
QRn—(k-l—l) or HQRn_(/H_l), with @ € Byy1 and R, € M;ij, for 3<k<n-2

It is easy to see that all MAP1 in M. are of either forms HR, | or UD|R,_5 are enu-
merated by m;(n — 1) and m4(n — 2), respectively.

Due to the Lemma 2.8 we have that all MAP1 in M} of the form R, are enumerated by
mi(n—1) —my(n —2) +my(n —3). For a fixed k, 3 <k <n — 2 the first part all paths of
the form QR,,_ (41 is counted, using the bijection, by m4 (k) and the second part is counted
naturally by m;(n — (k+ 1)). Thus, these paths are enumerate by

(ml(k 1) — ke —2) + k- 3)>m1(n ~(k+1)).

Varying k in the set {3,...,n — 3}, we obtain the desired result. O
The first eleven values of the sequence mq(n) for n =1,...,11 are as follows:
1, 2, 5, 13, 36, 105, 317, 982, 3105, 9981, 32520.

Y

3. SYMMETRIC AND ASYMMETRIC PEAKS IN MAP2

In this section, our research is focused on Motzkin paths with air pockets of the second
kind, denoted as M?2. It is worth recalling that in P € M?2, two consecutive down-steps
cannot occur, and any horizontal-step and down-step (except the last of the path) are im-
mediately followed by an up-step.

We introduce a trivariate generating function that depends on three key parameters: path
length, the count of symmetric peaks, and the number of asymmetric peaks. As a corollary
to this power series, we derive a generating function for the total number of paths avoiding
symmetric peaks, with coefficients corresponding to the Fibonacci numbers. Additionally,
we conduct an asymptotic analysis to explore the ratio of the number of symmetric peaks to

the total number of peaks for paths of specific lengths. The same analysis is performed for
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asymmetric peaks. Towards the conclusion of this section, we present a recursive relation
for counting the number of paths in M? with a given length.

Consider the generating function with the parameters of length, symmetric peaks, and
asymmetric peaks:

M;p,ap(xaya Z) = Z x|P|ySP(P)zap(P).
pPeM?
For brevity, we set M’ := M! _(z,y, 2).

sp,ap

Theorem 3.1. The generating function M. . (z,y, z) for the number of MAP2s with respect

sp,ap
to their length and the numbers of symmetric and asymmetric peaks is as follows:

(1—z)? <1 -2y —3(1+y—22)— /(1 - :c)R)
20(1 —x — 2%y + 222)(1 — 22 — 22y + 222)

?

where R is the polynomial:
1 -3z +2%(1 —2y) —2*(1 —?) —2°(1 +y —22)® + 2°(3 + 4y — 42).

Proof. We consider a MAP2s which can be categorized into three groups: H, HQ, or @,
where () is non-empty and starts with U. Now, let S be the set of non-empty MAP2 that
start with U, and we denote S := S(z,y, z) as its trivariate generating function. Clearly, we
have:

M =1+z+(1+2)S.

Let us determine the generating function S for P, where P is a path in §. We distinguish
several cases:
Case (1). When P = U*D,Q and a > 1, where @) can be either empty or belong to S, the
generating function for these paths is %(S +1). (See Figure 2 (left-hand side).)
Case (2). When P = UU*D,QU’Dy1R and a,b > 1, where Q and R are possibly empty
or belong to S, see Figure 2 (right-hand side), the generating function for these
paths is
2 22 25 , ,
S+1 S+1)=—=2(5+ 1)~
L HS+ DTS + 1) = i (5 + )
Case (3). When P = UU*D,QR and a > 1, where Q and R are in S, R can be empty, Q)
does not end with a symmetric peak, and () is obtained from () by increasing the
size of the last down-step by one, the generating function for these paths is

1

2
T

2V (S +1),

1—2z
where V' is the generating function for the paths in & that do not end with a
symmetric peak. Using the complement, it is clear that V =5 — (S + 1)%
Case (4). When P = UQU*D,1R and a > 1, where @, R are some MAP2, ) does not
start with a symmetric peak, see Figure 3 (right-hand side), the contribution is

ZEQ

xV’

- xz(S +1).
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Here, V' is the generating function for paths in S that do not start with a sym-
metric peak (as in case (3)), plus the g.f. for MAP2 starting with H, that is
V=V +az(S+1).

Case (5). When P = UQR, where @ and R are some MAP2, with R in S and Q does not
start and end with symmetric peaks, @ different from H, Q is obtained from @
by increasing the size of the last down-step by one, see Figure 4 (left-hand side),
the contribution is W (S + 1), where W is the g.f. for paths in S that do not
start and end Witlg a symmetric peak, and different from H. Clearly, we have
W=V -2V

Summarizing all these cases, we obtain the following functional equation:

%y x° 3
= D)+ ———2° 1)? 1
S 1_1_(5—1— )+(1_x)2z(5+ )—i—l_sz(S—i- )
3
+ V’l‘r_ 2(S+1)+2W (S +1).
This functional equation leads to the desired result. 0

The Taylor expansion of this generating function is

1+ 2+ 2%y +20°% + (¥ + 2y + 2)2* + (39 + 22 + 2y + 32)2°+
(y° + 5y + 3yz + 42% + 2y + 62)2° + O(2").

In Figure 6, the MAP2 paths of length 4 are displayed, with their corresponding weights
highlighted in boldface in the previous expansion.

SN A

4 4

Tty Ttz 4

Ty

FIGURE 6. The MAP2 of length 4 and their contribution in M. _ (z,y, z).

sp,ap

Corollary 3.2. The generating function for the number MAP2 avoiding symmetric peaks is
gen by:

(1 —2*) (14 2% — V1 — 4z + 422 — 223 + 26)

M'(x,0,1) =
(z,0,1) 2x(1 — x + 22)

The Taylor expansion is 1 + z + x* + 425 + 1025 + 2327 + 542% + 1312° + O(z'?), where
the sequence of coefficients does not appear in [15].

Corollary 3.3. The generating function for the number MAP2 avoiding asymmetric peaks
s given by:
1— 22
1—o—a?
The Taylor expansion is 1+ x + 2% + 22 + 3% + 525 + 826 + 1327 + 212% + 342° + O(21Y),

where the sequence of coefficients corresponds to the Fibonacci sequence A212804 in [15].
10
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By calculating 0,(M'(z,y,1))|,=1 and 0,(M'(z, 1, 2))|,=1 we obtain the following corollar-
ies.

Corollary 3.4. The g.f. for the total number of symmetric peaks in all MAP2 is
2(—1+ 3z + 222 + V1 — 2z — 322)
2(1 — 2)V/1 — 2x — 322 ’
and an asymptotic for the n-th coefficient is
V33"
36/mn

The Taylor expansion is z* + 22® + 4z 4+ 82° + 182% + 4327 + 1092° + 2862 + O(2'?),
where the sequence of coefficients does not appear in [15].

Corollary 3.5. The generating function for the total number of symmetric peaks in all

MAP2 is given by:
(2 -3z —32? — (2 — 2)V1 — 2z — 322
2(1 —z)v1 —2x — 3a?) ’
and an asymptotic for the n-th coefficient is
V33"
12¢/7n’
The Taylor expansion is z* + 5z° + 172% + 5327 + 1582® + 4642° + O(2'°), where the
sequence of coefficients does not appear in [15].

Let pa(n) be the number of peaks in all MAP2 on length n. From Corollaries 3.4 and 3.5
we can deduce that:

3n71
Paln) ~ s

Now, let us define sy(n) and t3(n) as the number of symmetric peaks and asymmetric
peaks, respectively, in all MAP2s of length n.

Corollary 3.6. The asymptotic for the ratio between the number of symmetric peaks and
the number of all peaks in all MAP2 is

lim s2(n) = 1
n—00 Py (n) 4

The asymptotic for the ratio between the number of asymmetric peaks and the number of all
peaks in all MAP?2 is
tg(n) . 3

lim = -.
n—00 Po (n) 4
The asymptotic for the ratio between the numbers of asymmetric and symmetric peaks in all

MAP2 is 3.

Corollary 3.7. The generating function for the total number of peaks in all MAP2 is given

by:
2(142z—+v1—2z—322)
2v/1 — 2z — 322
11




and an asymptotic for the n-th coefficient is

V33

9y/mn
The Taylor expansion is z? + 223 + 52% 4+ 1325 + 9627 + 26728 + 7502% + O(2'?), where
the sequence of coefficients corresponds to A005773 in [15], which also counts the directed

animals of size n. For example, in Figure 7 we show the 5 directed animals of size 3, which
correspond to the five peaks in all MAP2 of length 4, as shown in Figure 6.

FIGURE 7. The directed animals of size 3.

We use M2 to denote the set of paths of length n in M?, and we use my(n) to denote
the cardinality of M2. Let 8 C M? to represent all paths starting with a U step. Define
B2 := M2\ {HQ, 1|Qn — 1€ S,_1}. We use s(n) to denote the cardinality of S,,.

Theorem 3.8. Forn > 3, we have
n—3
ma(n) = s(n—2) +q(n—1) +mg(n —1) + ng(k)s(n —k—-1),
k=2
where mo(2) =1, s(2) =1, and s(n) = mg(n) — s(n —1).

Proof. Let us consider a path P € M2. Then P can be decomposed into either HQ,, 1,
UD1Qyp—2, My—1, or UMQp—(k41), where Q; € S;, and M; is obtained from a path in M?
by increasing the size of the last down-step by one.

From definition of B,,, we can deduce that s(i) = msy(i) — s(i — 1). Therefore, from the
decomposition, we can see that all paths of the form HQ@,_; and UD@Q,,_» are counted by
s(n — 1) and s(n — 2), respectively. Paths of the form M,,_; are counted by m2(n — 1).

For a fixed k, 2 < k < n — 3, once again from the decomposition, we have that all paths
of the form UM;Q,—(x+1) are counted by mo(k)s(n — k —1). So, by varying k in the set
{2,...,n—3}, and adding s(n—1), s(n—2), and m2(n—1), we obtain the desired result. [

The first eleven values of the sequence my(n) for n =2,...,12 are as follows:
1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798.
This sequence is related to the Motzkin numbers, see A001006.

4. THE NON-DECREASING MAPS

In this section we introduce the concept of non-decreasing Motzkin path with air pockets
of both kinds. The concept of non-decreasing path was first introduced by Barcucci et al.
2] in the context of the classical Dyck paths. Recently, Férez and Ramirez [12] studied this

concept for Motzkin paths.
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We present a trivariate generating function that depends on three parameters: path length,
the number of symmetric peaks, and the number of asymmetric peaks. We then count the
number of non-decreasing paths in the form of MAP1 and MAP2, and provide a table with
a similar structure to those counted in the previous sections.

4.1. Symmetric and asymmetric peaks in non-decreasing MAP1. In this section,
we focus our attention to the set A'”M? of non-decreasing MAP1. These are MAP1 paths in
which the sequence of valley ordinates, specifically DU, Dy H for k > 1, and HU, forms a
non-decreasing pattern when read from left to right.

Theorem 4.3 provides the generating function

Nopap(2,y, 2) = Z x‘P‘ySP(P)Zap(P)'
PeNM?

For brevity, we will refer to this generating function as N. To facilitate our analysis, we will
begin by introducing some essential lemmas.
This lemma explores non-decreasing MAP1, with all its valleys positioned at ground level.

Lemma 4.1. Let V := V(2. y, 2) denote the generating function for the number of non-
decreasing MAP1 having all its valleys at ordinate 0, with respect to the path’s length and
the number of symmetric and asymmetric peaks. The generating function is given by:

(1-=)?
1-3x+B—y)z?—(2—y)a’
It is important to note that non-decreasing MAP1 paths with valleys at ground level do

not contain any asymmetric peaks. Consequently, the variable z does not appear in the
expression for V.

V:

Proof. To establish the generating function for non-decreasing MAP1 with all its valleys at
ground level (or equivalently on the z-axis), we consider non-empty non-decreasing paths of
the form H® R H* --- R,H. Here, k > 0, a; > 0 for 0 < ¢ < k, and R; can either be a
symmetric peak U?D, or a truncated symmetric peak U*H?D,, where U*H®D,,, a,b > 1, for
1 <4 < k. Therefore, the generating function for this specific class of non-decreasing MAP1
is deduced as follows:

This completes the proof. ([l

Lemma 4.2. The g.f. B := Bgyap(z,y, 2) for the number of non-decreasing MAP1 ending
with a down-step, that do not end end with a symmetric peak, with respect to the length and
the numbers of symmetric and asymmetric peaks satisfies

22yV

1—2a’

B=N-1—-2V —
where V' 1s giwen in the previous lemma.

Proof. By reasoning with the complement, a non-decreasing MAP1 ending with a down-step,
that does not end with a symmetric peak, is a non-decreasing MAP1 different from (i) the
empty path, (i7) QH, and (ii) QU*D,, where @ has its valleys at ordinate 0. Summarizing

all these cases, we deduce functional equation. 0]
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Theorem 4.3. The g.f. Ngpap(z,y, 2) for the number of non-decreasing MAP1 with respect

P(z,y,2) where

to the length and the numbers of symmetric and asymmetric peaks is Olrya)

P(x,y,2) = 1—6x—2*(—14+y) — 2> (17— 4y +2) —2* (=114 6y —42) +2°(—2+4y — 5z +2?)
—2%(1 =324+ 22%) — 2" (—1+ 2y — 2% — 2®(—y + 2)
and Q(z,y, z) is
(1= 30— 22(=3 + )+ 2(—2+ ) (—1 + 4z + 22(=5 + y) + 2'(y — 2) + 233 — 2y + 2))

Proof. Let P be a non-decreasing MAP1 (NMAP1 for short). We distinguish the following

cases.

Case (1). If P = HQ where @ also is a NMAPI, then the g.f. for this case is V.

Case (2). f P=U"D,Q for a > 1 and Q a NMAP1, then the g.f. is %N.

Case (3). If P = U*H'D,Q, for a,b > 1 and @ a non-empty NMAP1, then the g.f. is
N

Case (4). If P = UU*D,QU’Dy,, for a,b > 1 and Q a NMAP1 having all its valleys on
the x-axis, then the g.f. is

ZL’32 5(722

l—a2 1—a’
where V' is given in Lemma 4.1.
Case (5). f P=UU*D,QHD for a > 1, Q having all its valleys at ordinate 0, then the g.f.
is L2V
Case (6). If P = UU*D,Q for a > 1, Q a non-empty NMAP1 ending with a down-step and
that does not end with a symmetric peak, and @) is obtained from () by increasing
by one the size of the last down step, then the g.f. is

x?’z

B’
1—2z
where B is the g.f. of Lemma 4.2.
Case (7). If P =UQU®D,1 for a > 1, @ a non-empty NMAP1 that does not start with a
symmetric peak, and having all its valleys on the z-axis, then the g.f. is

2 3
vo1-—YLy) 2
1—=x 1—=

Case (8). If P = UQ, where @ does not start with a symmetric peak, ends with a down step

but does not end with a symmetric peak, and @ is obtained from Q by increasing
the last down-step, then the g.f. is

. B_:v2yB_ a3 |
l—z (1—x)?

where B satisfies Lemma 4.2. Indeed, B — 2*yB corresponds to the paths @) that

11—z
do not start with a symmetric peak, ending with a down step, but not end with a

symmetric peak, and we must substract 2 in order to eliminate paths of the

(1-z)?
form U°H"D,, a,b > 1.

14



Case (9). If P = UQHD where @ does not start with a symmetric peak and having all its
valleys at ordinate 0, and different from H®, a > 1, then the g.f. is

).

Summarizing all these cases and using the the previous lemmas, we obtain the result. [J

2?yV x

3
V—-1-
x( l—2 1—=x

The Taylor expansion of this generating function is
L+z+ (y+Da? 4+ (2+3y)z® + (v? + 6y + 2+ 5)a* + (5% + 2% + 12y + 5z + 12)2° + O(2°)
Corollary 4.4. The g.f. for the number of non-decreasing MAP1 is
1 — 6z + 1322 — 1423 + 92 — 22°
(1 —3x + 222 — 23)(1 — 4o + 422 — 223)
The Taylor expansion of this generating function is

1+ 2+ 22 + 5% + 132* + 352° 4 962° + 26527 + 7342® 4 20402° + O(2'°),

N(z,1,1) =

where the sequence does not appear in [15].

We can adapt the same proofs used in the previous sections to non-decreasing MAPs of
both kinds. Therefore, we will only provide in Table 1 a summary of the results without
including the proofs.

Statistic population Generating function
Non-decreasing MAP1 avoid- | N(z,0,1) = 1@32;%:26;5%?&;;;”;
ing symmetric peaks

. . _1—6+132—133+54+25—6—7+8
Non—decreas;ng MAkPl avoid- | N(z,1,0) = (ﬁ o +22$2*$3)(1f4m+im2fx3fx4)x
ing asymmetric peaks
Non-decreasing MAP1 avoid- | N(z,0,0) = ‘1(;;”’;?;252_;?25;639‘34;?;;{33;;”;‘)
ing symmetric and asymmetric
peaks

(1—z)z?(1—z+22) (19243122 —52234-48x* — 322542225 — 16274828 —229)
(1-3z+2x2—23)2 (1—4x+4a2 —223)2

Symmetric peaks in all non-
decreasing MAP1

Asymmetric peaks in all non-
decreasing MAP1

(1—2)2*(1—3z—2%+8x3 —10x*+62° —225)
(1-3z+222 —a3) (1—4z+422 —223)2

TABLE 1. Some statistics for non-decreasing MAP1.

Notice that the sequences associated to the statistics given in Table 1 do not appear in
[15].

Corollary 4.5. An asymptotic for the ratio between the numbers of asymmetric and sym-
metric peaks in non-decreasing MAP1 is

(V33 +7) (26 + 6v/33)° — 233 — (26 + 6v/33) +2
3 (26 + 61/33)

~ 0.5436890133.

2
3
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4.2. Symmetric and asymmetric peaks in non-decreasing MAP2. Finally, we focus
on the set N'M? of non-decreasing Dyck paths with air pockets of second kind. The following
theorem provides the generating function

N;pvap(x’ Y Z) - Z :L"P‘ySP(P)ZaP(P)'
PeNM?

For short, we set N' := N. _ (x,y, z).

sp,ap

Theorem 4.6. The g.f. N{, . (7,y,2) for the number of non-decreasing MAP2 with respect
to the numbers of symmetric and asymmetric peaks is

(14 2)(1 — 3z + 222 + 2% — a* — 2%y + 223y — 2y — 22 + 22tz — 2°2 + 2°2?)
(1 —a—2%y)(1 — 2z + 23 — 22y + 23y — 232) '

Proof. Weset N' = N_, ,.(,9,z). Any nonempty non-decreasing MAP2 (NMAP2 for short)
is either H, HQ, or (), where () is non-empty and () starts with U.
Now, let S be the set of non-empty NMAP2 that starts with U, and S := S(x,y, z) its

associated generating function. Obviously, we have N' =1+ z + (1 + z)S.

Case (1). If P=U"D,Q, a > 1, where @ is either empty or ) € S, the g.f. for these paths
is 2 (S +1).

Case (2). If P = UU*D,QU’Dy1, a,b > 1, where Q is either empty or Q € S with all its
valleys on the z-axis, then the g.f. is

x? x? xd

W = 2w,
S (1—3:)22 ’

where W is the g.f. for NMAP2 in S U {€} having valleys on the z-axis, i.e.,
W =1+ L.

Case (3). If P = UHQU"D,1, a > 1, where @ is either empty or @) € S having all its
valleys on the x-axis, then the g.f. is f: W.

Case (4). If P =UU*D,Q, a > 1, where Q € S,  ends with an asymmetric peak, and Q
is obtained from () after increasing by one the size of the last down-step, then the
g.f. is

{EZZ

28 — (W —1)).

T
1—2z

Case (5). If P = UHQ), where Q € S, @ ends with an asymmetric peak, and Q is obtained
from (@) after increasing by one the size of the last down-step, then the g.f. is

22 (S —W +1).

Case (6). If P=U @, where Q is a NMAP2 in S, @ starts and ends with an asymmetric
peak, () is obtained from () by increasing by one the last down-step, then the
contribution is

2

x(S—W+1—1xy (S—W+1)).

— X
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Summarizing all these cases, we obtain the following functional equation.

2%y 52w 2t W 3z

S = S+1 S—W+1
1—:c( * )+(1—x)2+1—:c+1—:c< 1
2
+x2(S—W+1)+x(S—W+1)(1—1gix),
which induces the result for .S, and thus for N'. 0

The first terms of the Taylor expansion of N’ are
1+ 2+ yx® +2y2® + 2y +v* + 2)a* + (2y + 3y* + 32 + 2%)a”
+ (2y + 5y + oy + 62 + 2yz + 42%)2®
+ 2y + Ty + 4y + 11z + 8yz + 1122 + 2y2*)2" + O(2®).
Corollary 4.7. The g.f. for the number of non-decreasing MAP2 is
(1+2)(1 —2x)
1—2x — a2+ 2%
The first terms of the Taylor expansion are
1+ a4+ 2%+ 22° + 42" + 92° + 2020 + 4527 + 1012® + 22727 + O(2'°),

N'(z,1,1) =

where the sequence of coefficients corresponds to the sequence A052534 in [15].
In Table 2 we summarized the results for the MAP2.

Statistic population Generating function

Non-decreasing MAP2 avoid- | N'(x,0,1) = (1”()1(1_;;’?;2;;)”4)
ing symmetric peaks

Non-decreasing MAP2 avoid- | N'(z,1,0) = %, Fibonacci sequence
ing asymmetric peaks

22 (14x)(1—4x+322 4323 —z*—x5)
(1—z—22)(1—2z—22+23)2

Symmetric peaks in all non-
decreasing MAP2

Asymmetric peaks in all non-
decreasing MAP2

4 (142)(1—2z—322 423 4a*)
(1—z—=2?)(1—2z—x2+23)2

TABLE 2. Some statistics for non-decreasing MAP2.

Corollary 4.8. An asymptotic for the ratio between the numbers of asymmetric and sym-
metric peaks in NMAP2 is

a?(a*+a*—3a* —a+1)
—a® —a*+3a3+3a? —4a+1

~ 0.8019374457,

where

v Sin(w + %) V3VT COS(M

)
a=—-— + ~ 0.4450418680.

3 3 3
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