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Recently, Elizalde (2011) [2] has presented a bijection between the set Cn+1 of cyclic
permutations on {1,2, . . . ,n+1} and the set of permutations on {1,2, . . . ,n} that preserves
the descent set of the first n entries and the set of weak excedances. In this paper, we
construct a bijection from Cn+1 to Sn that preserves the weak excedance set and that
transfers quasi-fixed points into fixed points and left-to-right maxima into themselves. This
induces a bijection from the set Dn of derangements to the set Cq

n+1 of cycles without
quasi-fixed points that preserves the weak excedance set. Moreover, we exhibit a kind
of discrete continuity between Cn+1 and Sn that preserves at each step the set of weak
excedances. Finally, some consequences and open problems are presented.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction and notation

Let Sn be the set of permutations of length n, i.e., all
one-to-one correspondences from [n] = {1,2, . . . ,n} into
itself. We represent a permutation σ ∈ Sn in one-line nota-
tion, σ = σ1σ2 . . . σn where σi = σ(i), 1 � i � n. Moreover,
if γ = γ (1)γ (2) . . . γ (n) is a length n permutation then
the product γ · σ is the permutation γ (σ1)γ (σ2) . . . γ (σn).
In Sn , a k-cycle σ = 〈i1, i2, . . . , ik〉 is a length n permu-
tation verifying σ(i1) = i2, σ(i2) = i3, . . . , σ (ik−1) = ik ,
σ(ik) = i1 and σ( j) = j for j ∈ [n]\{i1, . . . , ik}. In partic-
ular, a 2-cycle is called a transposition. Let Cn ⊂ Sn be the
set of n-cycles. The elements of Cn will be called cyclic
permutations (or cycles for short). Obviously Cn+1 and Sn

have the same cardinality.
Any permutation σ ∈ Sn is uniquely decomposed as a

product of transpositions of the following form:
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σ = 〈p1,1〉 · 〈p2,2〉 · 〈p3,3〉 · · · 〈pn,n〉 =
n∏

i=1

〈pi, i〉, (1)

where pi are some integers such that 1 � pi � i � n. Con-
versely, any such decomposition provides a permutation
in Sn . Therefore, (1) yields a bijection from Sn to the prod-
uct set Tn = [1]×[2]×· · ·×[n]. Then we have another way
to represent a permutation:

Definition 1. The transposition array of a permutation σ =∏n
i=1〈pi, i〉 ∈ Sn is defined by p1 p2 . . . pn ∈ Tn .

For example, if σ = 1 4 5 6 3 2 then its decompo-
sition into transpositions is 〈1,1〉 · 〈2,2〉 · 〈3,3〉 · 〈2,4〉 ·
〈3,5〉 · 〈4,6〉, and its corresponding transposition array is
1 2 3 2 3 4. Notice that this decomposition is used in [1] in
order to obtain Gray codes for restricted classes of length
n permutations.

Let σ be a permutation in Sn . A descent of σ is a
position i, 1 � i � n − 1, such that σ(i) > σ(i + 1). Let
D(σ ) be the set of descents of σ . An excedance (resp.
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weak excedance) of σ is a position i, 1 � i � n, such that
σ(i) > i (resp. σ(i) � i). The set of excedances (resp. weak
excedances) of σ will be denoted E(σ ) (resp. W E(σ )).
A left-to-right maximum is a position i, 1 � i � n, such
that σ(i) > σ( j) for all j < i. The set of left-to-right
maxima of σ will be denoted L(σ ). A fixed point of σ
is a position i such that σ(i) = i. Let F (σ ) be the set
of fixed points of σ . A quasi-fixed point of σ is a posi-
tion i such that σ(i) = i + 1. Let Q F (σ ) be the set of
quasi-fixed points. For instance, if σ = 1 3 5 2 4 6 then
D(σ ) = {3}, E(σ ) = {2,3}, W E(σ ) = {1,2,3,6}, L(σ ) =
{1,2,3,6}, F (σ ) = {1,6} and Q F (σ ) = {2}. Let Dn be the
set of length n derangements (permutations without fixed
points).

A combinatorial statistics on Sn is a map f : Sn → N.
The distribution of f is the sequence (ai)i∈N where ai is
the cardinality of f −1(i). Many statistics on Sn have been
widely studied (number of descents, inversions and ex-
cedances, major index, . . .), see [4,10,7,8,11] for instance.
Descent and excedance statistics were first studied by
MacMahon [10] and can be considered as mirror images
of each other. Indeed, the numbers of descents and ex-
cedances have the same distribution on the length n per-
mutations. They are called Eulerian statistics. Foata [6]
presents a bijection from Sn to itself which exchanges ex-
cedances and descents. In the literature, descents of a per-
mutation are mostly studied for their many applications.
For instance, descents appears in theory of lattice path
enumeration (see Gessel and Viennot [9]).

More recently, Elizalde [2] constructs a bijection from
Sn to Cn+1 that preserves the descent set on the first
(n − 1) positions.

Theorem 1. (See [2].) For every n, there is a bijection ϕ :
Cn+1 → Sn such that if π ∈ Cn+1 and σ = ϕ(π), then

D(π) ∩ [n − 1] = D(σ ).

Moreover, this bijection also preserves the weak ex-
cedance set:

E(π) = W E(π) = W E(σ ).

Inspired by this theorem, we present similar results for
other statistics. Section 2 shows how one can character-
ize n-cycles, left-to-right maxima, (quasi-)fixed points, and
(weak) excedances using the transposition array represen-
tation. In Section 3, we give a constructive bijection from
Sn to Cn+1 that preserves the weak excedance set and
that transfers fixed points into quasi-fixed points and left-
to-right maxima into themselves. As a consequence, we
deduce a bijection from the set Dn of derangements (per-
mutations without fixed points) to the set Cq

n+1 of length
n + 1 cycles without quasi-fixed points that preserves the
set of excedances. In Section 4, we exhibit a kind of dis-
crete continuity between Sn and Cn+1 that preserves at
each step the set of weak excedances. Finally, we deduce
a bijection (preserving the excedance set) between Sn and
the set T 0

n of elements in Cn in which one entry has been
replaced with 0.
2. Preliminaries

In this section, we give several elementary lemmas
in order to characterize special points of a permutation
(left-to-right maximum, fixed point, excedance, . . .) us-
ing the transposition array representation. They will be
used throughout the paper. Before this, we state the two
straightforward claims:

Claim 1. For every j � 1, the permutation
∏ j

i=1〈pi, i〉 fixes all
values strictly larger than j.

Claim 2. If k < � and if for all i � � we have pi �= k, then the
permutation

∏n
i=�〈pi, i〉 fixes k.

In [1], it is shown how an n-cycle can be characterized
with its transposition array representation.

Lemma 1. (See [1, Remark 16].) Let σ be a permutation in Sn

and p = p1 p2 . . . pn be its transposition array. Then σ is an n-
cycle if and only if its transposition array contains only one fixed
point, i.e., p1 = 1 and pi �= i for i � 2. More generally, the num-
ber of cycles of σ is n − � where � is the number of indices i,
1 � i � n, such that pi �= i.

Proof. A simple induction on j starting at j = 1 shows
that the number of cycles (relatively to the classical de-
composition into disjoint cycles) in

∏ j
i=1〈pi, i〉 is (n − �),

where � is the number of i, 1 � i � j, such that pi �= i. �
Lemma 2. Let σ be a permutation in Sn and p1 p2 . . . pn be
its transposition array. Then k is a left-to-right maximum of σ if
and only if there exists i � k such that (a) pi = k, and (b) p j > k
for j > i.

Proof. Assume that k is a left-to-right maximum of σ . We
have σ( j) � σ(k) for j � k and in particular σ(k) � k.
Since σ = 〈p1,1〉 · 〈p2,2〉 · · · 〈pn,n〉 with 1 � pi � i � n,
and using Claims 1 and 2, the fact σ(k) � k induces the
existence of i � k such that pi = k. We choose the right-
most i � k verifying this property. So, Claims 1 and 2 give
σ(k) = i. Assume for a contradiction that there is j, j > i,
such that p j < pi = k; we choose the rightmost j. This
implies σ(p j) = j > i = σ(k) with p j < k, which contra-
dicts the fact that k is a left-to-right maximum. So (b)
is verified. Using Claims 1 and 2, the converse becomes
straightforward. �
Lemma 3. Let σ be a permutation in Sn and p1 p2 . . . pn be its
transposition array. Then k is a fixed (resp. quasi-fixed) point
of σ if and only if (a) pk = k (resp. pk+1 = k), and (b) there
does not exist i > k such that pi = k (resp. i > k + 1 such that
pi = k).

Proof. Assume that k is a fixed point of σ = 〈p1,1〉 ·
〈p2,2〉 · · · 〈pn,n〉 with 1 � pi � i � n, i.e., σ(k) = k. Sup-
pose for a contradiction there exists i > k such that pi = k;
we take the rightmost i verifying this property. Claims 1
and 2 give σ(k) = i > k which contradicts our hypothesis.
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Thus σ verifies (b). Claim 2 induces σ(k) = σ ′(k) where
σ ′ = 〈p1,1〉 · 〈p2,2〉 · · · 〈pk,k〉. Since σ(k) = k, Claim 1 in-
duces pk = k. The converse is straightforward. The proof
is obtained mutatis mutandis whenever we replace fixed
points with quasi-fixed points. �
Lemma 4. Let σ be a permutation in Sn and p1 p2 . . . pn be its
transposition array. Then k is an excedance (resp. a weak ex-
cedance) of σ if and only if there exists i > k (resp. i � k) such
that pi = k.

Proof. Assume that k is an excedance of σ = 〈p1,1〉 ·
〈p2,2〉 · · · 〈pn,n〉 with 1 � pi � i � n, i.e., σ(k) > k. Sup-
pose for a contradiction that there is no i > k such that
pi = k. Claim 2 induces σ(k) = σ ′(k) with σ ′ = 〈p1,1〉 ·
〈p2,2〉 · · · 〈pk,k〉. We deduce σ(k) � k which contradicts
the fact that k is an excedance. The converse is straight-
forward using Claims 1 and 2, and by taking i to be the
rightmost i such that pi = k. The reasoning is similar for
the case where k is a weak excedance. �

In order to illustrate these lemmas, we present an ex-
ample for each of them. For instance, if we set σ = 2413
then σ is a 4-cycle and its transposition array p1 p2 p3 p4 =
1122 contains only one fixed point (p1 = 1). Moreover,
k = 2 is a left-to-right maximum of σ and there is i =
4 � 2 such that pi = 2 and p j > 2 for j > 4. k = 2 is an
excedance and 2 appears on the right of p2 in the trans-
position array 1122 of σ . For σ = 2431, k = 3 is a fixed
point, its transposition array is 1132 and we have p3 = 3
and there does not exist i > 3 such that pi = 3. Finally,
k = 1 is a quasi-fixed point, we have p2 = 1 and there does
not exist i > 2 such that pi = 1.

3. Fixed points, weak excedances and left-to-right
maxima

Let φ be the map from Sn to Sn+1 defined, for every
σ ∈ Sn , by

φ(σ ) = 〈1,1〉 · 〈p1,2〉 · 〈p2,3〉 · · · 〈pn,n + 1〉,
where the transposition array of σ is p1 p2 . . . pn .

For example, φ(321) = φ(〈1,1〉 · 〈2,2〉 · 〈1,3〉) = 〈1,1〉 ·
〈1,2〉 · 〈2,3〉 · 〈1,4〉 = 4312. By construction the transposi-
tion array 1p1 p2 . . . pn of φ(σ ) has only one fixed point,
that is on the first position. With Lemma 1, the permu-
tation φ(σ ) is a cyclic permutation and then belongs to
Cn+1. Therefore φ is a bijection from Sn to Cn+1 (see Ta-
ble 1 for n = 3). Obviously, this construction allows to go
back from φ(σ ) to σ .

Now we prove that the bijection φ transforms the set
of weak excedances of σ ∈ Sn into the excedance set of
φ(σ ) ∈ Cn+1.

Remark 1. If σ ∈ Sn has no fixed points, then E(σ ) =
W E(σ ). This holds in particular when σ is a cycle of
length at least 2.

Theorem 2. The bijection φ : Sn → Cn+1 satisfies for any
σ ∈ Sn,
Table 1
The bijection φ from S3 to C4. Column T (σ ) (resp. T (φ(σ ))) gives the
transposition array of σ (resp. φ(σ )). The weak excedances are illustrated
in boldface. The last three columns give respectively the sets of left-to-
right maxima, fixed points and weak excedances of σ .

σ T (σ ) φ(σ ) T (φ(σ )) L(σ ) F (σ ) W E(σ )

123 123 2341 1123 {1,2,3} {1,2,3} {1,2,3}
132 122 2413 1122 {1,2} {1} {1,2}
213 113 3142 1113 {1,3} {3} {1,3}
231 112 3421 1112 {1,2} ∅ {1,2}
312 111 4123 1111 {1} ∅ {1}
321 121 4312 1121 {1} {2} {1,2}

W E(σ ) = E
(
φ(σ )

) = W E
(
φ(σ )

)
.

Moreover if k is a weak excedance of σ then σ ′(k) = σ(k) + 1
where σ ′ = φ(σ ), and we have

F (σ ) = Q F
(
φ(σ )

)
.

Proof. Let σ be a permutation in Sn and p1 p2 . . . pn its
transposition array, i.e., σ = 〈p1,1〉 · 〈p2,2〉 · · · 〈pn,n〉. The
transposition array of φ(σ ) is q1q2 . . .qn+1 = 1p1 p2 . . . pn .
By Lemma 4, k is a weak excedance of σ if and only if
there exists i � k such that pi = k which is equivalent
to the existence of j � k + 1 such that q j = k. Thus, by
Lemma 4 again, k is a weak excedance of σ if and only if
k is an excedance of φ(σ ), and W E(σ ) = E(φ(σ )). More-
over, for k ∈ W E(σ ), let i0 be the rightmost i � k such that
pi = k. Claims 1 and 2 give σ(k) = i0, and since qi0+1 =
pi0 = k, we obtain σ ′(k) = i0 + 1 where σ ′ = φ(σ ). Thus
we have F (σ ) ⊆ Q F (φ(σ )). For k ∈ W E(φ(σ )), Remark 1
induces that k ∈ E(φ(σ )), and Lemma 4 ensures the exis-
tence of i > k such that qi = k. Let i0 be the rightmost i.
Claims 1 and 2 give σ ′(k) = i0, and since qi0 = pi0−1 = k,
we obtain σ(k) = i0 − 1 which allows to conclude. �

As a consequence of Theorem 2 we deduce:

Corollary 1. The bijection φ : Sn → Cn+1 satisfies for any
σ ∈ Sn,

L(σ ) = L
(
φ(σ )

)
and,

if k is a left-to-right maximum of σ then σ ′(k) = σ(k) + 1
where σ ′ = φ(σ ).

Proof. Let k be a left-to-right maximum of σ , i.e., σ( j) �
σ(k) for j � k. Since it also is a weak excedance, Theo-
rem 2 induces σ ′(k) = σ(k)+1 where σ ′ = φ(σ ). Consider
j < k. If j is a weak excedance of σ , then we have σ( j) <

σ(k) and with Theorem 2, σ ′( j) = σ( j) + 1 < σ(k) + 1 =
σ ′(k). Otherwise σ( j) < j and then Theorem 2 ensures
that j is not a weak excedance of σ ′ and σ ′( j) < j < k <

σ ′(k) = σ(k) + 1. Thus we have k ∈ L(φ(σ )). The converse
is obtained similarly. �

See Table 1 for an illustration of Theorem 2 and Corol-
lary 1 for n = 3.

As the bijection φ moves fixed points into quasi-fixed
points, Theorem 2 and Remark 1 induce the following re-
sult:
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Fig. 1. Gluing of c = 〈n, c1, c2, . . . , cr〉 and d = 〈k − 1,d1,d2, . . . ,ds〉.
Table 2
The sets S4(k) for k = 1,2,3,4. The weak excedances on positions {1,2,3}
are illustrated in boldface.

S4(1) S4(2) S4(3) σ ∈ S4(4) = S3 · 4 W E(σ ) ∩ {1,2,3}
4123 4123 4123 3124 {1}
3142 3142 2143 2134 {1,3}
4312 4312 4213 3214 {1,2}
2413 2413 2413 2314 {1,2}
2341 1342 1243 1234 {1,2,3}
3421 1423 1423 1324 {1,2}

Corollary 2. The bijection φ from the set Dn of derangements
(i.e., length n permutations without fixed points) to the set Cq

n+1
of length (n + 1) cycles without quasi-fixed points is a bijection
such that: for any σ ∈ Dn,

E(σ ) = E
(
φ(σ )

)
.

Moreover, if k is an excedance of σ then σ ′(k) = σ(k)+1 where
σ ′ = φ(σ ).

4. A discrete continuity preserving the set of weak
excedances

In this part, we give a kind of discrete continuity be-
tween Sn and Cn+1 that preserves at each step the set of
weak excedances. For 1 � k � n, we denote by Sn(k) the
set of permutations σ ∈ Sn such that: (a) σ(n) � k; and
(b) all integers of the interval [k,n] lie in a same cycle of
σ (in the decomposition of σ into disjoint cycles). Obvi-
ously, Sn+1(1) = Cn+1 and Sn+1(n + 1) is obtained from Sn

by adding n + 1 to the right of each permutation of Sn .
Table 2 shows the different sets S4(k) for k = 1,2,3,4.

Definition 2. For k ∈ {2, . . . ,n}, we define hk : Sn(k) →
Sn(k − 1) by:

hk(σ ) =
{

σ if σ ∈ Sn(k − 1),

σ · 〈σ−1(k − 1),n〉 otherwise.

For Definition 2 to be valid, we need to prove that
hk(σ ) is indeed in Sn(k − 1) for any σ ∈ Sn(k). Let σ
be a permutation in Sn(k). Its decomposition into dis-
joint cycles contains a cycle c = 〈n, c1, c2, . . . , cr〉 with
r � 0, c1 � k and such that [k,n] ⊆ {n, c1, c2, . . . , cr}. The
case r = 0 means that c is reduced to the cycle c = 〈n〉.
In the case where σ /∈ Sn(k − 1), k − 1 does not ap-
pear in c and thus, it lies in another cycle d = 〈k −
1,d1,d2, . . . ,ds〉, s � 0. Therefore, the decomposition of
hk(σ ) = σ · 〈σ−1(k − 1),n〉 = σ · 〈ds,n〉 into disjoint cycles
is obtained from that of σ by gluing c and d into the cycle
〈n,k − 1,d1, . . . ,ds, c1, c2, . . . , cr〉. See Fig. 1 for an illustra-
tion of the gluing. So, this implies that hk(σ ) ∈ Sn(k − 1).

Theorem 3. For k ∈ {2, . . . ,n}, hk is a bijection.

Proof. Let us prove that hk is a bijection. In order to show
the injectivity we take σ and π in Sn(k) such that hk(π) =
hk(σ ). We distinguish three cases.

(1) If π and σ belong to Sn(k − 1) then hk(π) = π and
hk(σ ) = σ , and π = σ .

(2) If π and σ do not belong to Sn(k − 1) then we have
σ · 〈 j,n〉 = π · 〈�,n〉 where j = σ−1(k −1) and � = π−1(k −
1). Let c = 〈n, c1, c2, . . . , cr〉 (resp. c′ = 〈n, c′

1, c′
2, . . . , c′

r′ 〉)
be the cycle containing n in π (resp. σ ), and d = 〈k − 1,

d1,d2, . . . ,ds〉 (resp. d′ = 〈k − 1,d′
1,d′

2, . . . ,d′
s′ 〉) be the cy-

cle of π (resp. σ ) containing � (resp. j). We have c �= d,
c′ �= d′ , ds = �, d′

s′ = j. hk(π) (resp. hk(σ )) is obtained by
gluing c and d (resp. c′ and d′) as explained just after Def-
inition 2. Because hk(π) = hk(σ ), we deduce that

〈n,k − 1,d1, . . . ,ds, c1, c2, . . . , cr〉
= 〈

n,k − 1,d′
1, . . . ,d′

s′ , c′
1, c′

2, . . . , c′
r′
〉
.

Since c1 � k, c′
1 � k, [k,n] ⊆ {c1, c2, . . . , cr} and [k,n] ⊆

{c′
1, c′

2, . . . , c′
r′ }, we necessarily have s = s′ , r = r′ , ci = c′

i
for i � r, and di = d′

i for i � s. Thus we obtain σ = π .
(3) The case π ∈ Sn(k)\Sn(k−1) and σ ∈ Sn(k−1) does

not occur since the last entry of hk(σ ) is at least k while
the last value of hk(π) is k − 1.

Therefore hk is injective.
Now let us consider π ∈ Sn(k − 1). If π also belongs

to Sn(k) then π is the image of π by hk . If π does not
belong to Sn(k) then we necessarily have π(n) = k − 1. Let
c = 〈n,k − 1, c1, . . . , cr〉 be the cycle of π containing n and
i0 be the smallest i such that ci � k. Then the permutation
σ obtained from π by splitting c into the two cycles c′ =
〈n, ci0 , ci0+1, . . . , cr〉 and d = 〈k − 1, c1, . . . , ci0−1〉, belongs
to Sn(k) and satisfies hk(σ ) = π . Thus hk is surjective. �

A consequence of Theorem 3 is that the cardinality of
the sets Sn+1(k) is n! for each k ∈ {1,2, . . . ,n+1}. A simple
combinatorial argument proves the following remarkable
equality.

Remark 2. For all k ∈ {1,2, . . . ,n}, we have

n! = (n − k + 1) ·
k−1∑
i=0

(
k − 1

i

)
(n − k + i)!(k − i − 1)!.
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Table 3
The bijection f −1 from S3 to T 0

3 and the bijection ψ from S3 to C4. Excedances are illustrated
in boldface.

σ f −1(σ ) ψ(σ ) E( f −1(σ )) = E(σ ) E+(σ ) ∪ {1} = E(ψ(σ ))

123 012 4123 ∅ {1}
132 031 3142 {2} {1,3}
213 201 2413 {1} {1,2}
231 230 2341 {1,2} {1,2,3}
312 302 4312 {1} {1,2}
321 310 3421 {1} {1,2}
Both sides of the above equality count the cardinality
of Sn+1(k). Indeed, a permutation σ belongs to Sn+1(k)

if and only if σ(n + 1) � k and each integer in [k,n + 1]
lies into the same cycle c = 〈n + 1, c1, c2, c3, . . .〉 of σ . So,
there are (n − k + 1) choices for c1 = σ(n + 1) ∈ [k,n]. In
order to complete c we choose a set I of i values among
{1,2, . . . ,k − 1}, 0 � i � k − 1 and we consider all arrange-
ments of elements of the set I ∪ [k,n]\{c1}. Thus, for a
given i, 0 � i � k−1, there are (n−k+1) ·(k−1

i

) · (n−k+ i)!
possible cycles c and (k − i − 1)! choices for the remaining
values. Moving i from 0 to k − 1, we obtain the above for-
mula.

Theorem 4. For k ∈ {2, . . . ,n}, the bijection hk : Sn(k) →
Sn(k − 1) satisfies for any σ ∈ Sn(k),

W E(σ ) ∩ {1,2, . . . ,n − 1} = W E
(
hk(σ )

)
.

Proof. Let σ ∈ Sn(k). Notice that n is never a weak ex-
cedance of hk(σ ).

The case hk(σ ) = σ is trivial. Now let us assume that
σ ′ = hk(σ ) = σ · 〈 j,n〉 where j = σ−1(k − 1). We necessar-
ily have j � k − 1 and σ(n) � k.

Let us take i ∈ {1,2, . . . ,n − 1}. In the case where i �= j
and i �= n, we obtain σ ′(i) = σ(i); then i is a weak ex-
cedance of σ if and only if it is also one for σ ′ = hk(σ ).

If i = j then σ ′(i) = σ(n). As σ ∈ Sn(k), we have
σ(n) � k and then σ(n) > k − 1. We obtain j = i � k − 1
and σ(i) = σ( j) = k − 1, and hence i is a weak ex-
cedance of σ . Moreover, we have σ ′(i) = σ(n) > k − 1
so that i is a weak excedance of σ ′ . Finally, we have
W E(σ ) ∩ {1,2, . . . ,n − 1} = W E(hk(σ )). �
Corollary 3. There is a bijection h from Sn to Cn+1 that pre-
serves the set of all weak excedances.

Proof. We set h = h2 ◦ h3 ◦ · · · ◦ hn−1 ◦ hn ◦ hn+1 from
Sn+1(n + 1) to Sn+1(1) = Cn+1. Since Sn+1(n + 1) is the set
of permutations in Sn after adding n + 1 on the right, we
have W E(σ ) = W E(σ · (n + 1)) ∩ {1,2, . . . ,n}. Theorem 4
allows to conclude that W E(σ ) = W E(h(σ )). �

Notice that the bijection h does not transform fixed
points into quasi-fixed points (see for instance h(132) =
3421), unlike the bijection φ in Section 3.
5. Consequences and open problems

In this section we give some direct consequences of our
study and we propose two open problems concerning the
descent sets on cyclic permutations and derangements.

Following the notation from [2,3], let T 0
n be the set

whose elements are n-cycles in one-line notation in which
one entry has been replaced with 0. For example, T 0

3 =
{031,201,230,012,302,310}. Obviously the cardinality of
T 0

n is n!. Let σ be an element of T 0
n , we say that k,

1 � k � n, is an excedance of σ whenever σ(k) > k and
E(σ ) will be denote the set of excedances of σ . Theorem 5
is a counterpart of Elizalde’s result [2] for the set of ex-
cedances on T 0

n .
If E is a subset of [n] then we define the set E+ ⊆

{2,3, . . . ,n + 1} by:

E+ = {e + 1 | e ∈ E}.
Moreover, we define the involution χn from Sn into it-
self as follows: for any n � 1 and σ ∈ Sn , χn(σ )(i) =
n + 1 − σ(n + 1 − i) for i � n. For instance, we have
χ4(4132) = 3241. Less formally, χn(σ ) is obtained from
σ ∈ Sn by reading the complement of σ from right to left.
In the following we will omit the subscript n for χ ; it
should be clear from the context.

Using the map φ : Sn → Cn+1 presented in Section 3,
we consider the bijection ψ from Sn to Cn+1 defined by:

ψ(σ ) = χ
(
φ
(
χ(σ )

))
.

For example, ψ(312) = χ(φ(231)) = χ(3421) = 4312; see
Table 3 for an illustration of this map when n = 3.

The following corollary appears as a direct consequence
of Theorem 2.

Corollary 4. The bijection ψ : Sn → Cn+1 satisfies for any
σ ∈ Sn,

E+(σ ) ∪ {1} = E
(
ψ(σ )

)
.

Proof. It is obvious that an n-cycle has 1 as excedance;
thus 1 ∈ E(ψ(σ )). Now if k /∈ E+(σ ) ∪ {1} then we have
k > 1, σ(k − 1) � k − 1 and n + 1 − (k − 1) = n + 2 − k is a
weak excedance of χ(σ ), and we have χ(σ )(n + 2 − k) =
n+1−σ(k −1). With Theorem 2, n+2−k is an excedance
of φ(χ(σ )), and we have φ(χ(σ ))(n + 2 − k) = n + 1 −
σ(k − 1) + 1. Thus, χ(φ(χ(σ )))(n + 2 − (n + 2 − k)) = n +
2 − (n + 1 −σ(k − 1)+ 1), i.e., χ(φ(χ(σ )))(k) = σ(k − 1) �
k − 1 which induces that k is not an excedance of ψ(σ ).
Each implication of this reasoning can be also viewed as
an equivalence which achieves the proof. �
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Theorem 5. Let n be a positive integer. There is a bijection f
between T 0

n and Sn such that if σ ∈ T 0
n , then

E(σ ) = E
(

f (σ )
)
.

Proof. Let σ be an element of T 0
n ; σ is obtained from a

cycle π by replacing π(k) with 0 for some k, 1 � k � n.
Assume that the cyclic representation of π is 〈a1,a2, . . . ,

an−1,k〉 where ai ∈ [n]\{k} for all i � n − 1. Let us consider
π ′ defined by the cyclic representation π ′ = 〈a1 + 1,a2 +
1, . . . ,an−1 + 1,k + 1,1〉. Obviously, we have E(σ )+ ∪{1} =
E(π ′). Now, we set f (σ ) = ψ−1(π ′) where ψ is the bijec-
tion defined above. We immediately have:

E(σ )+ ∪ {1} = E
(
π ′)

= E
(

f (σ )
)+ ∪ {1},

which means E(σ ) = E( f (σ )). �
Thus we can directly deduce:

Corollary 5. For any n and any I ⊆ [n − 1],
∣∣{τ ∈ T 0

n , E(τ ) = I
}∣∣ = ∣∣{σ ∈ Sn, E(σ ) = I

}∣∣.
This last result appears as a counterpart of the follow-

ing Elizalde’s result for descents:

Theorem 6. (See [2].) For any n and any I ⊆ [n − 1],
∣∣{τ ∈ T 0

n , D(τ ) = I
}∣∣ = ∣∣{σ ∈ Sn, D(σ ) = I

}∣∣.
We conclude this paper by giving two open problems

about descent statistics (see [5] for some other open prob-
lems about descent statistics). Experimental investigations
allow us to think that the answer to these two problems is
positive. Problem 1 appears as a counterpart of Corollary 2
for descent statistics. Problem 2 would be a generalization
of the Elizalde’s result (Theorem 1, p. 2) and appears as a
counterpart of Theorem 4 for descent statistics.
Problem 1. Is it true that there exists a bijection from the
set of derangements Dn to the set Cq

n+1 of (n + 1)-cycles
without quasi-fixed points that preserves the set of de-
scents in {1,2, . . . ,n − 1}?

For 1 � k � n, we denote S ′
n(k) the set of permuta-

tions σ ∈ Sn such that the cycle of σ that contains n is
of length k.

Problem 2. For k ∈ {2, . . . ,n}, is it true that there is a bi-
jection h′

k from S ′
n(k) to S ′

n(k − 1) that preserves the set of
descents in {1,2, . . . ,n − 2}, i.e.,

D(σ ) ∩ {1,2, . . . ,n − 2} = D
(
h′

k(σ )
) ∩ {1,2, . . . ,n − 2}?
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