
Partial Motzkin paths with air pockets of the first kind
avoiding peaks, valleys or double rises

Jean-Luc Baril1 and José L. Ramı́rez2
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Abstract

Motzkin paths with air pockets (MAP) of the first kind are defined as a general-
ization of Dyck paths with air pockets. They are lattice paths in N2 starting at the
origin made of steps U = (1, 1), Dk = (1,−k), k ⩾ 1 and H = (1, 0), where two down-
steps cannot be consecutive. We enumerate MAP and their prefixes avoiding peaks
(resp. valleys, resp. double rise) according to the length, the type of the last step, and
the height of its end-point. We express our results using Riordan arrays. Finally, we
provide constructive bijections between these paths and restricted Dyck and Motzkin
paths.

1 Introduction

In a recent paper [2], the authors introduce, study, and enumerate special classes of lattice
paths, called Dyck paths with air pockets (DAP for short). Such paths are non empty lattice
paths in the first quadrant of Z2 starting at the origin, and consisting of up-steps U = (1, 1)
and down-steps Dk = (1,−k), k ⩾ 1, where two down-steps cannot be consecutive. These
paths can be viewed as ordinary Dyck paths (i.e., paths in N2 starting at the origin, ending
on the x-axis and consisting of U and D1(= D)), where each maximal run of down-steps is
condensed into one large down-step. As mentioned in [2], they also correspond to a stack
evolution with (partial) reset operations that cannot be consecutive (see for instance [6]).
The authors enumerate these paths with respect to the length, the type (up or down) of the
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last step and the height of the end-point. Whenever the last point is on the x-axis, they
prove that the DAP of length n are in one-to-one correspondence with the peak-less Motzkin
paths of length n− 1. They also investigate the popularity of many patterns in these paths
and they give asymptotic approximations. In a second work [3], the authors make a study
for a generalization of these paths by allowing them to go below the x-axis. They call these
paths Grand Dyck paths with air pockets (GDAP), and they also yield enumerative results
for these paths according to the length and several restrictions on the height. In a third
paper, Baril and Barry [4] study two generalizations of DAP by allowing some horizontal
steps H = (1, 0) with some conditions. They call them Motzkin paths with air pockets of the
first and second kind.

In this paper we study Motzkin paths with air pockets of the first kind, which are defined
as Motzkin paths (lattice paths in N2 starting at the origin and made of U , D, and H), where
each maximal run of down-steps is condensed into one large down-step. More precisely, we
consider lattice paths in N2 starting at the origin, consisting of steps U , H, and Dk, k ⩾ 1,
where two down-steps cannot be consecutive. We denote by D (resp. M, resp. MP) the set
of Dyck paths (resp. Motzkin paths, resp. Motzkin paths with air pockets of the first kind).
Moreover, we denote by PMP the set of partial Motzkin paths with air pockets (PMAP for
short). The MAP of the first kind are enumerated by the sequence A114465. This sequence
also counts the Dyck paths having no ascents of length 2 that start at an odd level.

Throughout the paper, we will use the following notations. For k ⩾ 0, we consider the
generating function fk = fk(z) (resp. gk = gk(z), resp. hk = hk(z)), where the coefficient of
zn in the series expansion is the number of partial Motzkin paths with air pockets of length
n ending at height k with an up-step, (resp. with a down-step, resp. with a horizontal step
H). We introduce the bivariate generating functions

F (u, z) =
∑
k⩾0

ukfk(z), G(u, z) =
∑
k⩾0

ukgk(z), and H(u, z) =
∑
k⩾0

ukhk(z).

For short, we also use the notation F (u), G(u), and H(u) for these functions.
A Riordan array is an infinite lower triangular matrix whose k-th column has generating

function g(z)f(z)k for all k ⩾ 0, for some formal power series g(z) and f(z), with g(0) ̸= 0,
f(0) = 0, and f ′(0) ̸= 0. Such a Riordan array is denoted by (g(z), f(z)). We refer to
[16, 17] for more details on Riordan arrays. Several authors have used Riordan arrays to
study lattice paths; see for example [10, 13, 14, 19, 20, 21].

The outline of this paper is the following. We present enumerative results for partial
Motzkin paths with air pockets of the first kind avoiding peaks (resp. avoiding valleys, resp.
avoiding double rises), knowing that a peak is an occurrence UDk for some k ⩾ 1, a valley
is an occurrence DkU for some k ⩾ 1, and a double rise is an occurrence UU . For each
avoidance, we provide bivariate generating functions that count the PMAP with respect to
the length, the type of the last step (up, down or horizontal step) and the height of the
end-point. All these results are obtained algebraically by using the famous kernel method
for solving several systems of functional equations. We express our results using Riordan
arrays and we deduce closed forms for PMAP of length n ending at height k. Finally, we
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provide constructive bijections between these paths and some restricted Dyck and Motzkin
paths.

2 Partial peak-less Motzkin paths with air pockets

In this section, we study partial Motzkin paths with air pockets of the first kind avoiding
occurrences of UDi for all i ⩾ 1.

2.1 Enumerative results

Let P be a length n PMAP ending at height k ⩾ 0 and avoiding the occurrences of UDi for
i ⩾ 1. If the last step of P is U , then k ⩾ 1 and we have P = QU , where Q is a length
(n− 1) MAP ending at height k− 1 and avoiding the peaks (Q can be the empty path). So,
we obtain the first relation fk = zfk−1 + zgk−1 + zhk−1 for k ⩾ 1, anchored with f0 = 1 by
considering the empty path. If the last step of P is a down-step Di, i ⩾ 1, then we have
P = QDi, where Q is a length (n − 1) PMAP ending at height ℓ ⩾ k + 1 with no up- and
down-steps at its end, and with no peaks. So, we obtain the second relation gk = z

∑
ℓ⩾k+1

hℓ.

If the last step of P is a horizontal step H, then we have P = QH, where Q is a length
(n − 1) PMAP ending at height k with no peaks, which implies that hk = z(fk + gk + hk)
for k ⩾ 0.

Therefore, we have to solve the following system of equations:
f0 = 1, and fk = zfk−1 + zgk−1 + zhk−1, k ⩾ 1,

gk = z
∑

ℓ⩾k+1

hℓ, k ⩾ 0,

hk = zfk + zgk + zhk, k ⩾ 0.

(1)

Multiplying by uk the recursions in (1) and summing over k, we have:

F (u) = 1 + z
∑
k⩾1

ukfk−1 + z
∑
k⩾1

ukgk−1 + z
∑
k⩾1

ukhk−1

= 1 + zuF (u) + zuG(u) + zuH(u),

G(u) = z
∑
k⩾0

uk
( ∑
ℓ⩾k+1

hℓ

)
= z

∑
k⩾1

hk(1 + u+ · · ·+ uk−1)

= z
∑
k⩾1

uk − 1

u− 1
hk =

z

u− 1
(H(u)−H(1)),

H(u) = zF (u) + zG(u) + zH(u).

Notice that we have F (1)−H(1) = 1 by considering the difference of the first and third
equations. Now, setting h1 := H(1) and solving these functional equations, we obtain
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F (u) =
h1 uz2 + zu+ z2 − u− z + 1

u2z + z2 − u− z + 1
,

G(u) = −z (h1 uz + zh1 − h1 + z)

u2z + z2 − u− z + 1
, H(u) =

z (zh1 − u+ 1)

u2z + z2 − u− z + 1
.

In order to compute h1, we use the kernel method (see [1, 11]) on H(u). We can write
the denominator (which is a polynomial in u of degree 2), as z(u− r)(u− s) with

r =
1 +

√
−4 z3 + 4 z2 − 4 z + 1

2z
and s =

1−
√
−4 z3 + 4 z2 − 4 z + 1

2z
.

Plugging u = s (which has a Taylor expansion at z = 0) in H(u)z(u− r)(u− s), we obtain
the equation zh1− s+ 1 = 0, which implies that

h1 =
s− 1

z
.

Finally, after simplifying by the factor (u−s) in the numerators and denominators, we obtain

F (u) =
r

r − u
, G(u) =

s− 1

r − u
, and H(u) =

1

r − u
,

which induces that

fk = [uk]F (u) =
1

rk
, gk = [uk]G(u) =

s− 1

rk+1
, and hk = [uk]H(u) =

1

rk+1
.

Theorem 1 The bivariate generating function for the total number of peak-less PMAP with
respect to the length and the height of the end-point is given by

Total(z, u) =
1

z(r − u)
,

and we have

[uk]Total(z, u) =
1

zrk+1
.

Finally, setting t(n, k) = [zn][uk]Total(z, u), we have for n ⩾ 2 and k ⩾ 1,

t(n, k) = t(n, k − 1) + t(n− 1, k)− t(n− 1, k − 2)− t(n− 2, k),

and setting tn := t(n, 0), then we have

tn = tn−1 +
n−3∑
k=0

tktn−k−3 +
n−1∑
k=2

(tk − tk−1) tn−k−1.
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Proof. The first three equalities are immediately deduced from the previous results. Now,
let us prove the last equality. Any length n peak-less MAP is of the form (i) HP where P
is a MAP of length n− 1, or (ii) UQHDR, where Q,R are some MAP such that the length
of Q lies into [0, n − 3], or (iii) P ♯Q, where P ♯ = UP ′Di, i ⩾ 2, and P ′Di−1 is a MAP of
length lying into [2, n − 1]. The number of P ′Di−1 of a given length k is the total number
of peak-less MAP of length k minus the number of peak-less MAP of length k and ending
with H. Taking into account all these cases, we obtain the result. 2

Corollary 1 The generating function that counts all peak-less PMAP with respect to the
length is given by

Total(z, 1) =
1

z(r − 1)
.

The first few terms of the series expansion of Total(z, 1) are

1 + 2z + 4z2 + 9z3 + 22z4 + 56z5 + 146z6 + 388z7 + 1048z8 + 2869z9 +O(x10),

which corresponds to the sequence A152225 in [18] counting Dyck paths of semilength n+1
with no peaks of height 0 (mod 3) and no valleys of height 2 (mod 3); see [7].

Corollary 2 The generating function that counts the peak-less MAP with respect to the
length is given by

Total(z, 0) =
1

zr
.

The first few terms of the series expansion of Total(z, 0) are

1 + z + z2 + 2z3 + 5z4 + 12z5 + 29z6 + 73z7 + 190z8 + 505z9 +O(z10),

which corresponds to the sequence A152171 in [18] counting Dyck paths of length 2n with
no peaks of height 2 (mod 3) and no valleys of height 1 (mod 3). In Section 2.2, we will
exhibit a constructive bijection between these two classes of paths.

Let T be the infinite matrix T := [t(n, k)]n,k⩾0, where t(n, k) = [zn][uk]Total(z, u). The
first few rows of the matrix T are

T =



1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0

2 3 3 1 0 0 0 0 0

5 6 6 4 1 0 0 0 0

12 15 13 10 5 1 0 0 0

29 38 33 24 15 6 1 0 0

73 96 87 63 40 21 7 1 0

190 248 229 172 110 62 28 8 1



.

5

https://oeis.org/A152225
https://oeis.org/A152171


In Figure 1 we show the peak-less PMAP counted by t(5, 1) = 15.

Figure 1: Peak-less PMAP of length 5 ending at height 1.

Corollary 3 The matrix T = [t(n, k)]n,k⩾0 is a Riordan array defined by(
C
(
z(1− z + z2)

)
, zC

(
z(1− z + z2)

))
,

where C(z) = 1−
√
1−4z
2z

is the generating function of the Catalan numbers cn = 1
n+1

(
2n
n

)
.

Proof. Indeed, we directly deduce the result from the following.

[uk]Total(z, u) =
1

zrk+1
=

1

zr
· 1

rk
= C

(
z(1− z + z2)

)
·
(
zC

(
z(1− z + z2)

))k
.

2

Corollary 4 We have

t(n, k) =
n−k∑
j=0

k + 1

2(n− j)− k + 1

(
2(n− j)− k + 1

n− k − j

)
a(n− k − j, j),

where a(n, k) = (−1)k
∑n

i=0

(
n
i

)(
n−i
k−2i

)
.

Proof. From the Lagrange Inversion Formula (cf. [8]), we know that

C(z)k =
∑
n⩾0

k

2n+ k

(
2n+ k

n

)
zn. (2)
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From definition of Riordan arrays and Eq. (2) we have

t(n, k) = [zn−k]
(
C
(
z(1− z + z2)

))k+1

= [zn−k]
∞∑
ℓ=0

k + 1

2ℓ+ k + 1

(
2ℓ+ k + 1

ℓ

)
zℓ(1− z + z2)ℓ

= [zn−k]
∞∑
ℓ=0

k + 1

2ℓ+ k + 1

(
2ℓ+ k + 1

ℓ

)
zℓ

2ℓ∑
j=0

a(ℓ, j)zj

= [zn−k]
∞∑
j=0

∞∑
ℓ=0

k + 1

2(ℓ+ ⌊j/2⌋) + k + 1

(
2(ℓ+ ⌊j/2⌋) + k + 1

ℓ+ ⌊j/2⌋

)
a(ℓ+ ⌊j/2⌋, j)zj+ℓ+⌊j/2⌋.

If we take s = j + ℓ+ ⌊j/2⌋, then

t(n, k) = [zn−k]
∞∑
j=0

∞∑
s=j

k + 1

2(s− j) + k + 1

(
2(s− j) + k + 1

s− j

)
a(s− j, j)zs

=
n−k∑
j=0

k + 1

2(n− j)− k + 1

(
2(n− j)− k + 1

n− k − j

)
a(n− k − j, j).

2

In [15], Rogers gave an equivalent characterization of the Riordan arrays. That is, every
element not belonging to row 0 or column 0 in a Riordan array can be expressed as a fixed
linear combination of the elements in the preceding row. The A-sequence is defined to be the
sequence coefficients of this linear combination. Analogously, Merlini et al. [9] introduced
the Z-sequence, that characterizes the elements in column 0, except for the top one.

An infinite lower triangular matrix [dn,k]n,k⩾0 is a Riordan array if and only if d0,0 ̸= 0
and there exist two sequences (a0, a1, a2, . . . ), with a0 ̸= 0, and (z0, z1, z2, . . . ) (called the
A-sequence and the Z-sequence, respectively), such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · for n, k ⩾ 0, (3)

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · for n ⩾ 0. (4)

The product of two Riordan arrays (g(z), f(z)) and (h(z), l(z)) is defined by

(g(z), f(z)) ∗ (h(z), l(z)) = (g(z)h(f(z)), l(f(z))) . (5)

Under this operation, the set of all Riordan arrays is a group [16]. The identity element is
I = (1, z) and the inverse of (g(z), f(z)) is given by

(g(z), f(z))−1 =
(
1/

(
g ◦ f<−1>

)
(z), f<−1>(z)

)
, (6)

where f<−1>(z) denotes the compositional inverse of f(z).
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The generating functions for the A-sequence and Z-sequence of the Riordan array F =
(g(z), f(z)), with inverse F−1 = (d(z), h(z)), are given by ([9, 5])

A(z) =
z

h(z)
and Z(z) =

1

h(z)
(1− d0,0d(z)) ,

respectively.
From the definition of the A-sequence and Z-sequence for the Riordan arrays we can give

an additional recurrence relation for the sequence t(n, k).

Corollary 5 We have

t(n+ 1, k + 1) =
∑
j⩾0

a(j)t(n, k + j),

where a(n) = (−1)n+1
∑n

k=1

∑k
j=0

1
k

(
j

n−k−j

)(
k
j

)(
n−k−2
k−1

)
for n ⩾ 1 and a(0) = 1. Moreover,

tn+1 =
∑
j⩾0

a(j + 1)t(n, j).

Proof. By Equation (6), the inverse of the matrix T = [t(n, k)]n,k⩾0 is given by T −1 =
(g2(z), zg2(z)), where

g2(z) =
−1 + z2 +

√
1− 2z2 + 4z3 − 3z4

2z3
.

Therefore, the A-sequence and Z-sequence of the Riordan array T have generating functions

A(z) =
∑
n⩾0

a(n)zn =
2z3

−1 + z2 +
√
1− 2z2 + 4z3 − 3z4

and Z(z) =
A(z)− 1

z
.

The generating function A(z) corresponds with the sequence A247162, where the explicit
formula for a(n) can be found. From (3) we obtain the result. 2

The first few values of the sequence a(n) for n ⩾ 0 are

1, 1, 0, 1, 0, 1, −1, 2, −3, 6, −10, . . . .

2.2 A bijective approach

Corollary 2 proves that the set of peak-less Motzkin paths with air pockets of length n
(ending on the x-axis) is equinumerous to the set Dn(2, 1) of Dyck paths of length 2n with
no peak at height 2 (mod 3) and no valley at height 1 (mod 3).

Any non-empty peak-less Motzkin path with air pockets is either of the form (1) Hα or
(2) Uα1Uα2 · · ·UαkHDkβ, where k ⩾ 1 and α, α1, . . . , αk, β are possibly empty peak-less
MAP. We refer to the left part of Figure 2 for an illustration of this form.

Remember that MP denotes the set of Motzkin paths with air pockets of the first kind.
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Definition 1 We recursively define the map ψ from MP to ∪n⩾0Dn(2, 1) as follows. For
α ∈ MP, we set:

ψ(P ) =


ϵ if P = ϵ (i)

UDψ(α) if P = Hα with α ∈ MP (ii)

U3ψ(α1)DUψ(α2)DU . . .DUψ(αk)D
3ψ(β) if P = Uα1Uα2 . . . UαkHDkβ with

k ⩾ 1 and α1, . . . , αk, β ∈ MP . (iii)

We refer to Figure 3 for an illustration of the third case of the definition of ψ.

α1
α2

αk

β
=⇒

ψ(α1) ψ(α2) ψ(αk)

ψ(β)

Figure 2: Illustration of the map ψ for the more general case (iii) in Definition 1.

Due to the recursive definition, the image of peak-less MAP of length n under ψ is a Dyck
path of length 2n. Moreover it is clear that the obtained path is a Dyck path in ∪n⩾0Dn(2, 1).
For instance (see Figure 3 for an illustration of this example).

ψ(UUHDHUHUHD3HH) = ψ(U ·
α1︷ ︸︸ ︷

UHDH ·U ·
α2︷︸︸︷
H ·U ·

α3︷︸︸︷
ϵ ·HD3 ·

β︷︸︸︷
HH

= U3ψ(UHDH) ·DU · ψ(H) ·DU · ψ(ϵ) ·D3 · ψ(HH)

= U3 · (U3D3ψ(H)) ·DU · UD ·DU ·D3 · UDUD
= U6D3UD2U2D2UD2DUDUD.

UUHDHUHUHD3HH UUUUUUDDDUDDUUDDUDDDUDUD

Figure 3: ψ(UUHDHUHUHD3HH) = UUUUUUDDDUDDUUDDUDDDUDUD.

Theorem 2 For all n ⩾ 0, the map ψ induces a bijection between MPn and Dn(2, 1).

Proof. Since MPn and Dn(2, 1) have the same cardinality (due to Corollary 2 and A152171
in [18]), it suffices to prove that for P,Q ∈ MP , P ̸= Q implies ψ(P ) ̸= ψ(Q). A simple
induction on n allows to obtain the result. 2
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3 Partial valley-less Motzkin paths with air pockets

Using the same arguments we used for the system of the previous section, we study partial
Motzkin paths with air pockets of the first kind avoiding occurrences of DiU for all i ⩾ 1.

3.1 Enumerative results

In the same way as we done in Section 2.1, we have to solve the following system of equations:
f0 = 1, and fk = zfk−1 + zhk−1, k ⩾ 1,

gk = z
∑

ℓ⩾k+1

fℓ + z
∑

ℓ⩾k+1

hℓ, k ⩾ 0,

hk = zfk + zgk + zhk, k ⩾ 0.

(7)

Multiplying by uk the recursions in (7) and summing over k, we have:

F (u) = 1 + zuF (u) + zuH(u),

G(u) =
z

u− 1
(F (u)− F (1) +H(u)−H(1)),

H(u) = zF (u) + zG(u) + zH(u).

Notice that we have (1 − z)F (1) = 1 + zH(1) by considering the first equation. Now,
setting f1 := F (1) and solving these functional equations, we obtain

F (u) =
f1 uz2 − uz2 + zu+ z2 − u− z + 1

u2z + z2 − u− z + 1
,

G(u) = − f1 uz + f1 z − zu− f1 + 1

u2z + z2 − u− z + 1
, H(u) = −z (f1 uz − zu− f1 + u+ z)

u2z + z2 − u− z + 1
.

In order to compute f1, we use the kernel method (see [1, 11]) on F (u). We can write
the denominator (which is a polynomial in u of degree 2), as z(u− r)(u− s) with

r =
1 +

√
−4 z3 + 4 z2 − 4 z + 1

2z
and s =

1−
√
−4 z3 + 4 z2 − 4 z + 1

2z
.

Plugging u = s (which has a Taylor expansion at z = 0) in F (u)z(u−r)(u−s), we obtain
the equation f1 sz2 − sz2 + zs+ z2 − s− z + 1 = 0, which implies that

f1 = 1 +
s− 1

z
.

Finally, after simplifying by the factor (u − s) in the numerators and denominators, we
obtain

F (u) =
r

r − u
, G(u) =

s− 1

z(r − u)
, and H(u) =

s

r − u
,

which implies that

fk = [uk]F (u) =
1

rk
, gk = [uk]G(u) =

s− 1

zrk+1
, and hk = [uk]H(u) =

s

rk+1
.
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Theorem 3 The bivariate generating function for the total number of partial valley-less
MAP with respect to the length and the height of the end-point is given by

Total(z, u) =
s

z(r − u)
,

and we have
[uk]Total(z, u) =

s

zrk+1
.

Finally, setting t(n, k) = [zn][uk]Total(z, u), we have for n ⩾ 2, k ⩾ 1,

t(n, k) = t(n, k − 1) + t(n− 1, k)− t(n− 1, k − 2)− t(n− 2, k),

and setting tn := t(n, 0) and t−1 = 1, then we have for n ⩾ 2,

tn−1 = tn−2 +
n−3∑
k=0

tk−1tn−k−4 +
n−1∑
k=2

(tk−1 − tk−2) tn−k−2.

Proof. The first three equalities are immediately deduced from the previous results. For the
last equality, the term tn satisfies the same recurrence relation as in Theorem 1 (modulo
shift of n) since the two sequences are equal modulo a shift. 2

Corollary 6 The generating function that counts the partial valley-less MAP with respect
to the length is given by

Total(z, 1) =
s

z(r − 1)
.

The first few terms of the series expansion of Total(z, 1) are

1 + 2z + 5z2 + 13z3 + 34z4 + 90z5 + 242z6 + 660z7 + 1821z8 + 5073z9 +O(x10),

which does not appear in [18].

Corollary 7 The generating function that counts the partial valley-less MAP with respect
to the length is given by

Total(z, 0) =
s

zr
.

The first few terms of the series expansion of Total(z, 0) are

1 + z + 2z2 + 5z3 + 12z4 + 29z5 + 73z6 + 190z7 + 505z8 + 1363z9 +O(z10),

which corresponds to a shift of the sequence A152171 in [18] counting Dyck paths of length
2n with no peaks of height 2 (mod 3) and no valleys of height 1 (mod 3) (see also Section
3.1).
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Let T be the infinite matrix T := [t(n, k)]n,k⩾0. The first few rows of the matrix T are

T =



1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

2 2 1 0 0 0 0 0 0

5 4 3 1 0 0 0 0 0

12 10 7 4 1 0 0 0 0

29 26 18 11 5 1 0 0 0

73 67 49 30 16 6 1 0 0

190 175 133 85 47 22 7 1 0

505 467 361 241 139 70 29 8 1



.

In Figure 4 we show the valley-less PMAP counted by t(4, 0) = 12.

Figure 4: The 12 UU -less PMAP of length 4 ending at height 0.

Corollary 8 The matrix T = [t(n, k)]n,k⩾0 is a Riordan array defined by(
(z2 − z + 1)C

(
z(1− z + z2)

)2
, zC

(
z(1− z + z2)

))
where C(z) = 1−

√
1−4z
2z

is the generating function of the Catalan numbers cn = 1
n+1

(
2n
n

)
.

Proof. Indeed, we directly deduce the result from the following.

[uk]Total(z, u) =
s

zrk+1
=

s

zr
· 1

rk
= (z2 − z + 1)C

(
z(1− z + z2)

)2 · (zC (
z(1− z + z2)

))k
.
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2

From a similar argument as in Corollary 4 we obtain the following result.

Corollary 9 We have

t(n, k) =
n−k∑
j=0

k + 2

2(n− j)− k + 2

(
2(n− j)− k + 2

n− k − j

)
a(n− k − j + 1, j),

where a(n, k) = (−1)k
∑n

i=0

(
n
i

)(
n−i
k−2i

)
.

3.2 A bijective approach

Corollary 7 and Corollary 2 prove that the set of valley-less Motzkin paths with air pockets
of length n− 1 (ending on the x-axis) is equinumerous to the set of peak-less Motzkin paths
with air pockets of length n, which is in one-to-one correspondence with the set Dn(2, 1)
of Dyck paths of length 2n with no peak at height 2 (mod 3) and no valley at height 1
(mod 3) (see a constructive bijection in Section 2.2). Below, we provide a bijection between
valley-less MAP of length n− 1 and peak-less MAP of length n.

Any valley-less Motzkin path with air pockets is either of the form (i) ϵ, (ii) αH, (iii)
UαD, (iv) βHUαD, (v) UγDk, or (vi) βHUγDk, where α, β are valley-less MAP (possibly
empty), and γDk−1 is a valley-less MAP. According to all these cases, we define the map ϕ.

Definition 2 We recursively define the map ϕ from valley-less MAP of length n − 1 to
peak-less MAP of length n. Let P be a valley-less MAP, we set:

ϕ(P ) =



H if P = ϵ, (i)

ϕ(α)H if P = αH, (ii)

Uϕ(α)D if P = UαD, (iii)

ϕ(β)Uϕ(α)D if P = βHUαD, (iv)

ϕ(αDk−1)
♯ if P = UαDk, (v)

ϕ(β)ϕ(αDk−1)
♯ if P = βHUαDk, (vi)

where the ♯-operator maps a peak-less MAP of the form αDk−1 into the peak-less MAP
(αDk−1)

♯ = UαDk.

Due to the recursive definition, the image of valley-less MAP of length n− 1 under ϕ is a
peak-less MAP of length n. The recursive definition naturally induces that ϕ is a bijection.
Using the bijection ψ presented above, we can easily obtain a constructive bijection between
valley-less MAP of length n− 1 and Dyck paths of length 2n with no peak at height 2 (mod
3) and no valley at height 1 (mod 3).
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4 Partial UU-less Motzkin paths with air pockets

In this section, we study partial Motzkin paths with air pockets of the first kind avoiding
occurrences of UU .

4.1 Enumerative results

In the same way as we done in the previous section, we have to solve the following system
of equations: 

f0 = 1, f1 = z + zg0 + zh0, and fk = zgk−1 + zhk−1, k ⩾ 2,

gk = z
∑

ℓ⩾k+1

fℓ + z
∑

ℓ⩾k+1

hℓ, k ⩾ 0,

hk = zfk + zgk + zhk, k ⩾ 0.

(8)

Multiplying by uk the recursions in (8) and summing over k, we have:

F (u) = 1 + zu+ zuG(u) + zuH(u),

G(u) =
z

u− 1
(F (u)− F (1) +H(u)−H(1)),

H(u) = zF (u) + zG(u) + zH(u).

Notice that we have H(1) = (1 + z)(F (1) − 1) by considering the first and the last
equation. Now, setting f1 := F (1) and solving these functional equations, we obtain

F (u) =
f1u z3 + 2f1u z2 + u2z2 − u2z − 2u z2 + 2uz + z2 − u− z + 1

u2z2 + u z3 + uz + z2 − u− z + 1
,

G(u) = −z (f1u z
3 + 2f1u z2 − u z3 + f1 z2 − u z2 + f1z + uz − z2 − 2f1 + 2)

u2z2 + u z3 + uz + z2 − u− z + 1
,

H(u) =
z (f1u z3 + 2f1u z2 − u z3 + f1 z2 − u2z − 2u z2 + 2f1z + uz − z2 − u− 2z + 1)

u2z2 + u z3 + uz + z2 − u− z + 1
.

In order to compute f1, we use the kernel method (see [1, 11]) on F (u). We can write
the denominator (which is a polynomial in u of degree 2), as z2(u− r)(u− s), with

r =
−z3 − z + 1 +

√
z6 − 2 z4 + 2 z3 − 3 z2 − 2 z + 1

2z2
and

s =
1− z − z3 −

√
z6 − 2 z4 + 2 z3 − 3 z2 − 2 z + 1

2z2
.

Plugging u = s (which has a Taylor expansion at z = 0) in F (u)z2(u − r)(u − s), we
obtain the equation f1s z3 + 2f1s z2 + s2z2 − s2z − 2s z2 + 2sz + z2 − u− z + 1 = 0, which
implies that

f1 = 1 +
s− 1

z(z + 2)
.
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Finally, after simplifying by the factor (u−s) in the numerators and denominators, we obtain

F (u) =
z − 1

z
+

r

z(r − u)
, G(u) =

s+ z

r − u
, and H(u) =

zr + 1

z(r − u)
− 1,

which implies that f0 = 1, g0 =
s+z
r
, h0 =

1
zr

and

fk = [uk]F (u) =
1

zrk
, gk = [uk]G(u) =

s+ z

rk+1
, and hk = [uk]H(u) =

1 + zr

zrk+1
.

Theorem 4 The bivariate generating function for the total number of UU-less PMAP with
respect to the length and the height of the end-point is given by

Total(z, u) =
1 + uz

(r − u)z2
,

and we have

[u0]Total(z, u) =
1

z2r
,

and for k ⩾ 1

[uk]Total(z, u) =
rz + 1

z2rk+1
.

Finally, setting t(n, k) = [zn][uk]Total(z, u), we have for n ⩾ 2, k ⩾ 1,

t(n, k) = t(n, k − 1) + t(n− 1, k)− t(n− 1, k − 1)− t(n− 2, k)

− t(n− 2, k − 2)− t(n− 3, k − 1).

and setting tn := t(n, 0), then we have

tn = tn−1 + tn−2 + tn−3 +
n−2∑
k=2

tk−2tn−k−2 +
n−1∑
k=3

(tk−1 − tk−2)tn−k−1.

Proof. The first three equalities are immediately deduced from the previous results. Now,
let us prove the last equality. Any non-empty length n UU -less MAP is of the form (i) HP
where P is a UU -less MAP of length n− 1, or (ii) UDQ where Q is a MAP of length n− 2
avoiding UU , or (iii) UQDR, where Q,R are some MAP avoiding UU such that the length
of Q lies into [1, n− 2] and Q starts and ends with H, or (iv) PQ, where P = UP ′Di, i ⩾ 2,
and P ′Di−1 is a MAP of length lying into [3, n − 1] and starting with H. The number of
P ′Di−1 of a given length k is the total number of UU -less MAP of length k − 1 minus the
total number of UU -less MAP of length k−2. Taking into account all these cases, we obtain
the result.

2

Corollary 10 The generating function that counts the partial UU-less MAP with respect to
the length is given by

Total(z, 1) =
1 + z

(r − 1)z2
.
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The first few terms of the series expansion of Total(z, 1) are

1 + 2z + 4z2 + 9z3 + 21z4 + 50z5 + 122z6 + 302z7 + 759z8 + 1928x9 +O(x10),

which does not appear in [18].

Corollary 11 The generating function that counts UU-less MAP with respect to the length
is given by

Total(z, 0) =
1

z2r
.

The first few terms of the series expansion of Total(z, 0) are

1 + z + 2z2 + 4z3 + 9z4 + 20z5 + 47z6 + 112z7 + 274z8 + 679x9 +O(z10),

which corresponds to the sequence A095980 in [18] counting Motzkin paths of length n with
no occurrences of UHU .

Let T be the infinite matrix T := [t(n, k)]n,k⩾0. The first few rows of the matrix T are

T =



1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0 0

4 4 1 0 0 0 0 0 0

9 9 3 0 0 0 0 0 0

20 21 8 1 0 0 0 0 0

47 50 21 4 0 0 0 0 0

112 121 55 13 1 0 0 0 0

274 298 143 39 5 0 0 0 0



.

In Figure 5 we show the UU -less PMAP counted by t(4, 0) = 9.

Figure 5: The 9 UU -less PMAP of length 4 ending at height 0.
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The matrix G is not a (proper) Riordan array. For this reason, we consider the matrix
G := [g(n, k)]n⩾0,k⩾0, where

g(n, k) =

1, if n = k = 0;

t(n+ k − 1, k), if n ⩾ 1.

The first few rows of the matrix G are

G =



1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0

2 4 3 1 0 0 0 0 0

4 9 8 4 1 0 0 0 0

9 21 21 13 5 1 0 0 0

20 50 55 39 19 6 1 0 0

47 121 143 113 64 26 7 1 0

112 298 372 319 203 97 34 8 1



.

Corollary 12 The matrix G = [g(n, k)]n,k⩾0 is the Riordan array defined by (t(z), t(z)− 1),
where

t(z) =
1 + z(1− z)2 −

√
(1− 3z + z3)(1 + z + z3)

2z(1− z + z2)
.

Proof. It follows from the relation t(z) = 1
zr

+ 1. 2

It seems difficult to obtain a close form for the coefficient g(n, k) using the Lagrange
Inversion Formula. Indeed, t(z) can be expressed in terms of C(u), where u = 1

4
(−z6+2z4−

2z3 + 3z2 + 2z) is a polynomial of degree 6, which complicates the calculations.

4.2 A bijective approach

Corollary 11 proves that the set of UU -less Motzkin paths with air pockets of length n
(ending on the x-axis) is equinumerous to the set of Motzkin paths of length n avoiding
UHU . Below, we provide a bijection between these two sets.

Any UU -less Motzkin path with air pockets is either of the form (i) ϵ, (ii) Hα, (iii)
UDα, (iv) UHDα, (v) UHαHDβ, or (vi) UHkγDiβ, where α, β are UU -less MAP (possibly
empty), and γDi−1 is a UU -less MAP and k ⩾ 1. According to all these cases, we define the
map χ.
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Definition 3 We recursively define the map χ from UU-less MAP of length n to UHU-less
Motzkin paths of length n. Let P be a UU-less MAP, we set:

χ(P ) =



ϵ if P = ϵ, (i)

Hχ(α) if P = Hα, (ii)

UDχ(α) if P = UDα, (iii)

UHDχ(α) if P = UHDα, (iv)

UHHχ(α)Dχ(β) if P = UHαHDβ, (v)

Uχ(γDi−1)H
k−1Dχ(β) if P = UHkγDiβ, (vi)

Due to the recursive definition, the image of UU -less MAP of length n by χ is a UHU -
less Motzkin path of length n. The recursive definition naturally induces that χ is a
bijection. For instance, if P = UHUHD2UDUHUHHUD3H then we obtain χ(P ) =
χ(UH1UHD2)χ(UD)χ(UHUHHUD3)χ(H) = UUHDDUDUUUDHDDH (see Figure 6
for an illustration of this example).

UHUHD2UDUHUHHUD3H UUHDDUDUUUDHDDH

Figure 6: χ(P ) = UUHDDUDUUUDHDDH.
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Math. 344(2) (2021), 112209.

[21] L. Yang, S.-L. Yang, and T.-X. He. Generalized Schröder matrices arising from enumer-
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