Whole mirror duplication-random loss model and pattern avoiding permutations

Jean-Luc Baril *, Rémi Vernay

LE2I UMR-CNRS 5158, Université de Bourgogne, B.P. 47 870, 21078 Dijon Cedex, France

Article Info

Article history:
Received 29 June 2009
Received in revised form 10 February 2010
Accepted 20 April 2010
Available online 21 April 2010
Communicated by A.A. Bertossi

Keywords:
Algorithms
Combinatorial problems
Pattern avoiding permutation
Whole duplication-random loss model
Genome
Generating algorithm
Binary reflected Gray code

1. Introduction and notation

The well-known genome duplication consists in copying a part of the original genome inserted into itself, followed by the loss of one copy of each of the duplicated genes (see [2,9,11,14,17] for an explanation of different methods of duplication). From a formal point of view, a genome of n genes is represented by a permutation of length n. In a previous article, Chaudhuri et al. [7] investigated a variant called the tandem duplication-random loss model: the duplicated part (of size K) of the genome is inserted immediately after the original portion, followed by the loss procedure. This model comes from evolutionary biology where it has been applied to the vertebrate mitochondrial genomes. Chaudhuri et al. introduce a notion of distance between two genomes and they provide an algorithm to compute it efficiently for certain regions of the parameter space. Bouvel and Rossin [5] have also studied this model. They proved that the class of permutations obtained from the identity after p steps (of width K) is also a class of pattern avoiding permutations. More particularly, they investigate the restricted case of a whole duplication (W-duplication for short): the whole duplication consists in copying entirely the permutation on its right and the loss procedure consists to delete one of the two copies of each gene. Here, we give an example of the process of a W-duplication followed by the loss procedure on the permutation 123456:

123456 \rightarrow 123456123456
\rightarrow 124635.

© 2010 Elsevier B.V. All rights reserved.
of width K necessary and sufficient to obtain any permutation. More recently, Bouvel and Pergola [4] showed a local and simpler characterization and several properties of the set of minimal permutations with 2^p descents.

In this article, we focus on the whole mirror duplication-random loss model (WM-duplication for short): it consists in copying the mirror of the permutation on its right followed by the loss procedure. This model very likely occurs in one half of eubacterial genomes, and possibly in most chromosomes [8,15]. Fig. 1 illustrates a WM-duplication for the permutation $\sigma = 5421673$:

$$5421673 \rightarrow 5421673 3761245 \quad \text{mirror duplication} \quad \rightarrow 5421673 3761245 \quad \text{loss procedure} \quad \rightarrow 5463712.$$}

Let S_n denote the set of n-length sequences $s = s_1s_2 \ldots s_n$ of positive integers. The mirror of s is $\tilde{s} = s_n s_{n-1} \ldots s_1$. A subsequence of s is a sequence $s_1s_2 \ldots s_m$ for $1 \leq i_1 < i_2 < \ldots < i_m \leq n$. A subsequence is called a substring when the set $\{i_j, 1 \leq j \leq m\}$ is an interval, i.e. when the subsequence appears as consecutive elements in s. An ascent (resp. a descent) of s is any position i ($1 \leq i \leq n - 1$) with $s_i < s_{i+1}$ (resp. $s_i > s_{i+1}$). A run up (resp. a run down) of s is a subsequence of length at least one in which the elements are in increasing order (resp. decreasing order). More generally, a run up (or run down) is said to be maximal when it cannot be extended in a longer run up (resp. run down) in the sequence. We refer the reader to Rodney and Wilf [6] for results concerning the enumeration of permutations that have a given number of runs up and down. For instance, if $s = 5467312$ then position 4 is a descent, the substring 46 is a run up, and 467 is a maximal run up. Note that 5 is also a maximal run up. A valley of s is a substring which is a run down followed by a run up each of the length of at least two, i.e. a substring $s_k s_{k+1} \ldots s_l$, $1 \leq k < \ell \leq n$, such that there is j ($k < j < \ell$) verifying $s_k > s_{k+1} > \ldots > s_j$ and $s_j < s_{j+1} < \ldots < s_\ell$. A valley is maximal if the substring is maximal for this property. In the above example, the sub-strings 5467 and 7312 are the only maximal valleys of s. We denote by $val(s)$ the number of maximal valleys in s, i.e. the cardinality of the set $\{j, s_j < min\{s_{j-1}, s_{j+1}\}\}$. A recursive formula enumerating permutations with a given number of valleys can be found in [16].

On the other hand, a sequence s of length n is a permutation whenever each s_i is a distinct member of the set $\{1, 2, \ldots, n\}$. In the sequel, permutations will be denoted by Greek letters: $\sigma, \pi, \tau, \ldots$. Let S_n be the set of all permutations of length n ($n \geq 1$). In relation to the previous definition, any permutation σ contains at most $\lfloor \frac{n-1}{2} \rfloor$ valleys. A permutation $\sigma \in S_n$ is alternating if $\sigma_1 > \sigma_2 < \sigma_3 > \sigma_4 < \sigma_5 > \ldots$. In the literature [1], alternating permutations are also called down-up permutations and are enumerated by the Euler numbers (A000111 [19]). For instance, the permutation 324165 is alternating. Notice that an alternating permutation of length n contains exactly $\lfloor \frac{n-1}{2} \rfloor$ valleys.

A permutation π of length $k, k \leq n$, is a pattern of a permutation $\sigma \in S_n$ if there is a subsequence of σ which is order-isomorphic to π; i.e. if there is a subsequence $\sigma_{i_1} \sigma_{i_2} \ldots \sigma_{i_\ell}$ of σ (with $1 \leq i_1 < i_2 < \ldots < i_\ell \leq n$) such that $\sigma_{i_1} < \sigma_{i_m}$ whenever $\pi_\ell < \pi_m$. We write $\pi \prec \sigma$ to denote that π is a pattern of σ. A permutation σ that does not contain π as a pattern is said to avoid π. For example, $\sigma = 1423$ contains the patterns 132, 312 and 123; but σ avoids the pattern 321. The class of all permutations avoiding the patterns $\pi_1, \pi_2, \ldots, \pi_k$ is denoted $S(\pi_1, \pi_2, \ldots, \pi_k)$, and $S(\pi_1, \pi_2, \ldots, \pi_k)$ denotes the set of permutations of length n avoiding $\pi_1, \pi_2, \ldots, \pi_k$. We also say that $S(\pi_1, \pi_2, \ldots, \pi_k)$ is a class of pattern-avoiding permutations of basis $\{\pi_1, \pi_2, \ldots, \pi_k\}$. A class C of permutations is stable for \prec if, for any $\sigma \in C$, for any $\pi \prec \sigma$, then we also have $\pi \in C$. We now formulate a remark that is crucial for the present study.

Remark 1. If a class C of permutations is stable for \prec then C is also a class of pattern avoiding permutations of basis $B = \{\sigma \neq \emptyset, \forall \pi \prec \sigma \text{ with } \pi \neq \sigma, \pi \in C\}$.

The paper is organized as follow. In Section 2, we prove that the class of permutations obtained from the identity after a given number p of whole mirror duplications is the class of permutations with at most $2^p - 1$ valleys. This is the class of permutations avoiding the alternating permutations of length $2^p + 1$. Moreover, we obtain the length of a shortest path between any permutation and the identity. In Section 3, we yield two algorithms (and their
complexity) which construct such a shortest path. One of them uses an efficient algorithm for generating the well-known binary reflected Gray code [3,10]. In Section 4, we give some results about other models of duplications using W- and WM-duplications.

2. Pattern avoiding permutations and the mirror duplication-random loss model

In this section we study the WM-duplication random loss model in terms of pattern avoiding permutations. We establish that the class $C(p)$ obtained from the identity after p WM-duplications is exactly the class of permutations avoiding all alternating permutations of length $2^p + 1$.

Lemma 1. Let σ and π be two different permutations such that $\pi < \sigma$. Then σ contains at least many valleys as π does.

Proof. It is sufficient to check the result for $\sigma \in S_n$ and $\pi \in S_{n-1}$ since a straightforward induction will complete the proof. Let $\sigma \in S_n$ and $\pi \in S_{n-1}$ such that $\pi < \sigma$, then π is order-isomorphic to a subsequence of σ obtained from σ by deleting only one entry of σ. We distinguish three non-isomorphic configurations illustrated in Fig. 2. More precisely, if we delete the encircled value in configuration (b), this reduces the number of valleys of σ. This does not occur for (a) and (c) where the number of valleys remains invariant after deletion of the encircled value. In all cases, a deletion of value in σ can not increase the number of valleys.

Lemma 2. A permutation obtained from the identity after a given number p of WM-duplications contains at most $2^{p-1} - 1$ valleys.

Proof. We obtain the proof by induction. The result holds for $p = 1$; indeed a mirror duplication of the identity cannot create a valley. Now, let us assume that each permutation π obtained from the identity after $(p - 1)$ mirror duplications contains at most $2^{p-2} - 1$ valleys. Let σ be a permutation obtained from the identity after p mirror duplications. Then σ is obtained from a permutation π with $2^{p-2} - 1$ valleys after exactly one mirror duplication. Therefore σ can be written as the concatenation of two subsequences of π and π'; i.e. $\sigma = \tau \tau'$ where τ (resp. τ') is a subsequence of π (resp. π'). According to Lemma 1, τ and τ' contains at most $2^{p-2} - 1$ valleys. As the concatenation of τ and τ' can (eventually) create one valley between them, σ contains at most $2 \cdot (2^{p-2} - 1) + 1 = 2^{p-1} - 1$ valleys which achieves the induction.

Theorem 1. The class $C(p)$ of permutations obtained from the identity after a given number p of mirror duplications is the class of permutations with at most $2^{p-1} - 1$ valleys.

Proof. After considering Lemma 2, it suffices to prove that any permutation σ with at most $2^{p-1} - 1$ valleys can be obtained from the identity after p mirror duplications. We proceed by induction on p. Indeed, let σ be a permutation with k valleys, $2^{p-2} - 1 < k \leq 2^{p-1} - 1$. Then σ can be written $\sigma = \tau \tau'$ where τ corresponds to the longest prefix of σ containing exactly $2^{p-2} - 1$ valleys and τ' the remaining suffix. We decompose the permutation $\tau = u_1d_1u_2d_2 \ldots u_id_i$, where u_i and d_i are respectively runs up and down defined as follows: u_1 is the first run up excepted its top value; d_1 the run down just after u_1; u_2 the run up just after d_1 excepted its top value, and so on. Notice that u_1 can be empty which does not occur for d_1. Remark that we have $\ell = 2^p - 2$ and thus $k < 2\ell$. For example, $\tau = 5421673$ has the decomposition: u_1 is empty, $d_1 = 5421$, $u_2 = 6$ and $d_2 = 73$. Let also $u_{i+1}d_{i+1} \ldots u_id_i \ldots u_2d_2 \ldots$ be the similar decomposition for τ'. In this decomposition, the runs u_i and d_i are empty for $i > k$. Now let us perform the following process: we sort in decreasing order the values that appear in d_i or u_{i+1} which create a run D_i; we sort in increasing order the values in u_i or d_{i-1} which creates a run up U_i; we construct the sequence $S = U_iD_i$. We sort in a decreasing order sequence D_{i-1} the values in d_i or u_{i-1}, and so on. At each step j, we insert the obtained ordered sequence U_j and D_j at the beginning of S. The permutation $S = U_1D_1 \ldots U_{i-1}D_{i-1}U_iD_i$ obtained at the end of this process contains at most $2^{p-2} - 1$ valleys. See Fig. 3 for an example of construction of S. Thus, by induction, S can be obtained from the identity after $(p - 1)$ mirror duplications. By construction σ is reached by one mirror duplication of S. Indeed, from any U_i (resp. D_i), $1 \leq i \leq \ell$, we can reconstitute the corresponding u_i and $d_{2\ell-i+1}$ (resp. d_i and $u_{2\ell-i+1}$). Therefore σ can be constructed from the identity with p mirror duplications.

Notice that the permutation σ is decomposed in a partition into runs up and down u_i and d_i. We will use this decomposition in Section 3.2 to reconstitute a path of WM-duplications from the identity to σ.

Corollary 1. Let σ be a permutation and $val(\sigma)$ the number of its valleys. In the mirror duplication model, $\lceil \log_2(val(\sigma)) + 1 \rceil + 1$ steps are necessary and sufficient in order to obtain σ from the identity permutation.

Proof. Let p be the integer such that $2^{p-2} - 1 < val(\sigma) \leq 2^{p-1} - 1$, i.e. $p = \lceil \log_2(val(\sigma)) + 1 \rceil + 1$. According to Theorem 1, $p = \lceil \log_2(val(\sigma)) + 1 \rceil + 1$ steps are sufficient to obtain σ from the identity. It is also necessary since σ contains at least 2^{p-2} valleys which means that σ cannot be obtained from the identity in $(p - 1)$ steps at most.

In the next part we will provide algorithms in order to reconstitute a shortest path between the identity and a given permutation.
Theorem 2. The class $C(p)$ of permutations obtained after a given number p of WM-duplications is the class of permutations avoiding the alternating permutations of length $2^p + 1$.

Proof. Indeed, the permutations obtained after p mirror duplications is stable for the relation \prec, i.e. if $\sigma \in C(p)$ and $\pi < \sigma$ then $\pi \in C(p)$ (see Lemma 1). Thus (see Remark 1), $C(p)$ is also a class of pattern avoiding permutations $S(B)$ where B is the set of minimal (relatively to \prec) permutations σ that are not in $C(p)$. Such a minimal permutation σ contains exactly 2^{p-1} valleys. Indeed, $\sigma \not\in C(p)$ means $\text{val}(\sigma) \geq 2^{p-1}$ and any permutation with at least $2^{p-1} + 1$ valleys is not minimal since it contains a pattern $\pi \not\in C(p)$ with 2^{p-1} valleys. Moreover, the configuration $\sigma_{i-1} < \sigma_i < \sigma_{i+1}$ and $\sigma_{i-1} > \sigma_i > \sigma_{i+1}$ can not occur since if we delete σ_i we do not decrease the number of valleys. Also we necessarily have $\sigma_1 > \sigma_2$. Thus we deduce that σ is an alternating permutation with 2^{p-1} valleys and its length is $2^p + 1$. □

For example, $C(1) = S(213, 312)$ and $C(2) = S(21435, 31425, 41325, 32415, 42315, 21534, 31524, 51324, 32514, 52314, 41523, 51423, 42513, 52413, 43512, 53412)$.

We also obtain a more general result (see Theorem 3) for the class of permutations having at most p valleys. Notice that, with [16, 12, 13], a bivariate generating function for this class is:

$$
\frac{1}{1-y} \left(1 - \frac{1}{1+y} + \frac{1}{\sqrt{y-1}} \right) \times \tan \left(x\sqrt{y-1} + \arctan \left(\frac{1}{\sqrt{y-1}} \right) \right),
$$

where the coefficient of $x^a y^b$ is the number of permutations of length n with at most k valleys.

Theorem 3. The class of permutations having at most p valleys is the class of permutations avoiding the alternating permutations of length $2p + 3$.

Proof. The proof is obtained mutatis mutandis. □

3. Algorithmic considerations

In this section, we present two algorithms that provide a possible scenario of whole mirror duplications and losses for any $\sigma \in S_n$. Both construct a shortest path of WM-duplications from identity to σ. The first algorithm reconstitutes the path in reverse order, i.e., we start from σ and at each step we compute the predecessor of the current permutation until the identity. The second algorithm computes the successor of the current permutation by starting from the identity until σ. These two algorithms give (generally) two different paths. The second method is interesting in the sense where it uses the special structure of the reflected binary Gray code [10]. Moreover, in the case where we want to get the first (resp. last) elements of the path, Algorithm 2 (resp. Algorithm 1) will be more efficient. Finally, we discuss the complexity of these algorithms.

Notice that if we have a shortest path \mathcal{P} of WM-duplications from identity to σ, we can easily obtain a shortest path of WM-duplications from σ^{-1} to the identity by applying σ^{-1} on each permutation of \mathcal{P}.

3.1. A path from $12\ldots n$ to $\sigma \in S_n$: Algorithm 1

Here we explain how we can establish an algorithm in order to construct a scenario of WM-duplications from identity to $\sigma \in S_n$ by reconstructing this path from σ, i.e. at each step we find the predecessor of the current permutation and the process finishes when the identity is reached. We partition the permutation σ as follow: $\sigma = u_1' d_1' u_2' d_2' \ldots u_k' d_k'$ where $u_1' = \sigma_1 \ldots \sigma_{k_1}$ is the maximal run up containing the first entry σ_1'; d_k' is the maximal run down containing σ_{k_1}; d_1' is the maximal run down containing σ_{i+1}; u_k' is the maximal run up just before d_k', i.e. the value just before d_k' in σ belongs to u_k'; we continue this process by alternating runs up and down until the permutation σ is entirely partitioned. Notice that this decomposition is not the same as we have done in the proof of Theorem 1. For i from 1 to $\ell = \floor{\frac{k+1}{2}}$, we define by U_i (resp. D_i) the increasing (resp. decreasing) order sorting of u_i' and d_{i-1}' (resp. d_i' and u_{i-1}'). Let $\pi = U_1 D_1 U_2 D_2 \ldots U_\ell D_\ell$ be the concatenation of all sorted
Algorithm 1 The procedure BackPath producing a scenario of WM-duplications from 12\ldots n to $\sigma \in S_n$.

\begin{algorithm}
\begin{algorithmic}
\Procedure{BackPath}{\sigma}
\While{$\sigma \neq 12\ldots n$}
\State $\pi \leftarrow \emptyset$
\State Let $\sigma = u_1^d_1 u_2^d_2 \ldots u_k^d_k$ be the partition into runs up and runs down
\For{$i = 1$ to $\lfloor \log_2(\text{val}(\sigma)+1) \rfloor$}
\State Sort in increasing order u_i' and d_{k-i+1} and append the sorted substring on the right of π
\State Sort in decreasing order d_i' and u_{k-i+1}' and append the sorted substring on the right of π
\EndFor
\State $\sigma \leftarrow \pi$
\EndWhile
\EndProcedure
\end{algorithmic}
\end{algorithm}

substrings U_i and D_i where D_ℓ can be empty. Therefore π contains at most $(\ell - 1) = \lfloor \frac{k+1}{2} \rfloor - 1 = \lfloor \frac{\text{val}(\sigma)+2}{2} \rfloor - 1 = \lfloor \frac{\text{val}(\sigma)}{2} \rfloor$ valleys. This step requires $O(n)$ computations since we can simultaneously detect and sort the runs up and down. By iterating this process with this new permutation π, Corollary 1 ensures that the procedure BackPath (see Algorithm 1) constructs a path from identity to σ in $(\lfloor \log_2(\text{val}(\sigma)+1) \rfloor+1)O(n)$, i.e. $O(n \log_2(n))$ in the worst case. For instance, this process applied to the permutation structure of the binary reflected Gray code [3]. For instance, Fig. 4 shows such a labeling. The reflected binary Gray code [10]: we can do this using a (the runs up are in boldface).

3.2. A path from 12\ldots n to $\sigma \in S_n$: Algorithm 2

In this section, we construct a path of WM-duplications from 12\ldots n to the permutation $\sigma \in S_n$, i.e. we start from the identity and at each step we find the successor of the current permutation; the process finishes when σ is reached. We decompose the permutation $\sigma = u_1 d_1 u_2 d_2 \ldots u_k d_k ... u_1 d_1 u_2 d_2$ in runs up and down in the same way as we have done in the proof of Theorem 1. We recall this decomposition: u_i and d_i are respectively runs up and down defined as follows: u_1 is the first run up except its top value; d_1 the run down just after u_1; u_2 the run up just after d_1 except its top value, and so on. Notice that u_1 can be empty: such a decomposition is given as example in the proof of Theorem 1.

We now label each run in this decomposition with the reflected binary Gray code [10]: we can do this using a loopless algorithm introduced by Bitner, Ehrlich, and Rengold [3]. For instance, Fig. 4 shows such a labeling. The structure of the binary reflected Gray code B_n is crucial: $B_0 = 0 \cdot B_{n-1} \cup 1 \cdot \overline{B}_{n-1}$ anchored by $B_1 = \{0, 1\}$ and where \overline{B}_n is the list B_n considered in the reverse order. The first runs from u_1 to d_1 have 0 as their least significant bit, then those have 1. According to the proof of Theorem 1, we reconstitute the previous permutation π of σ by concatenating (on the left) the sorting in decreasing order D_ℓ of d_ℓ and $u_{\ell+1}$, the sorting in increasing order U_ℓ of u_ℓ and $d_{\ell+1}$, and so on.

Conversely, at the step j of our algorithm we perform a WM-duplication of π by: (i) keeping in the first copy of π the elements labeled 0 on the jth least significant bit, and, (ii) keeping in the mirror the elements labeled 1 on the jth least significant bit (see Fig. 4 for an example). This step requires only $O(n)$ computations.

Algorithm 2 The procedure Path producing a scenario of WM-duplications from 12\ldots n to $\sigma \in S_n$.

\begin{algorithm}
\begin{algorithmic}
\Procedure{Path}{}\State $\pi = 12\ldots n$
\State Partition $\sigma = u_1 d_1 u_2 d_2 \ldots u_k d_k$ into runs up and runs down
\State Label the runs up and runs down with the reflected binary Gray code (loopless algorithm [3]) for $j = 1$ to $\lceil \log_2(k+1) \rceil$ do
\State Make a WM-duplication step on π that keeps in the first copy of π exactly the elements whose label has 0 in its jth least significant bit.
\EndFor
\EndProcedure
\end{algorithmic}
\end{algorithm}

4. Other models of duplication

In this section, we investigate two variants of the whole mirror duplication: 1) we do one WM-duplication of the identity followed by several W-duplications and, 2) we do one WM- or/and W-duplication of the identity followed by several W-duplications. For these two cases we provide a characterization of the class of permutations obtained after p duplications.

4.1. One WM-duplication followed by several W-duplications

We have seen in the first section that one WM-duplication of the identity gives the class of permutations without valley. Thus, we obtain by induction that the class of permutations obtained after one WM-duplication of the identity followed by $(p-1)$ W-duplications is included in the class of permutations with at most $2^{p-1} - 1$ valleys.

Theorem 4. The class of permutations obtained after one WM-duplication of the identity followed by $(p-1)$ W-duplications is the class of permutations with at most $2^{p-1} - 1$ valleys.

Proof. Theorem 1 induces that the class of permutations obtained after one WM-duplication of the identity is the class of permutations without valley. Thus the result is true for $p = 1$. Now we proceed by induction. Let us assume that the class of permutations obtained after one WM-duplication of the identity followed by $(p-1)$ W-duplications is the class of permutations with at most $2^{p-1} - 1$ valleys. Let σ be a permutation in this last class. If we apply one
W-duplication on \(\sigma \), we obtain a permutation \(\pi \) with at most \(2(2^{p-1} - 1) + 1 = 2^p - 1 \) valleys. Now it suffices to prove that any permutation \(\pi \) with at most \(2^p - 1 \) valleys can be obtained after one W-duplication of a permutation \(\sigma \) with at most \(2^p - 1 \) valleys. Indeed, let \(\pi \) be a permutation with \(k \) valleys, \(2^p - 1 < k \leq 2^{p-1} - 1 \). As we have done in the proof of Theorem 2, we write \(\pi = \tau \tau' \) where \(\tau \) corresponds to the longest prefix of \(\pi \) containing exactly \(2^{p-1} - 1 \) valleys and \(\tau' \) the remaining suffix. We decompose the permutation \(\tau = u_1 d_1 u_2 d_2 \ldots u_i d_i \), where \(u_1 \) and \(d_i \) are respectively runs up and down defined as follows: \(u_1 \) is the first run up excepted its top value; \(d_i \) is the run down just after \(u_1 \); \(u_2 \) is the run up just after \(d_1 \) excepted its top value, and so on. We necessarily have \(\ell = 2^{p-1} \) and thus \(k < 2\ell \). Let also \(u_{\ell+1} d_1 \ldots u_{\ell+i} d_k \ldots u_{2\ell} d_2 \) be the similar decomposition for \(\tau' \). Now let us perform the following process: we sort in increasing order the values that appear in \(u_1 \) or \(u_{\ell+1} \) which creates a run up \(U_1 \); we sort in decreasing order the values in \(d_i \) or \(d_{\ell+i} \) which creates a run down \(D_1 \); we construct the sequence \(S = U_1 D_1 \). We sort in an increasing order sequence \(U_2 \) the values in \(u_2 \) or \(u_{\ell+2} \), and so on. At each step \(j \), we insert the obtained ordered sequences \(U_j \) and \(D_j \) on the right of \(S \). The permutation \(\pi = U_1 D_1 \ldots U_{\ell-j} D_{\ell-j} U_j D_j \) obtained at the end of this process contains at most \(2^{p-1} - 1 \) valleys. By construction \(\pi \) is reached by one W-duplication of \(S \) since we can reconstitute \(U_i \) and \(u_{\ell+i} \) from \(U_i \) (resp. \(d_i \) and \(d_{\ell+i} \) from \(D_j \)). We conclude by induction. \(\square \)

The following corollary is directly deduced from Theorem 4 with the same proof as for Theorem 2.

Corollary 2. The class of permutations obtained after one WM-duplication of the identity followed by \((p - 1)\) W-duplications is the class of permutations avoiding the alternating permutations of length \(2^p + 1\).

4.2. One W- or WM-duplication followed by several W-duplications

In this part, we perform one W- or WM-duplication of the identity followed by several W-duplications. Let us recall that an ascent (resp. a descent) of an \(n \)-length permutation \(\sigma \) is a position \(i \), \(1 \leq i \leq n - 1 \), such that \(\sigma(i) < \sigma(i + 1) \) (resp. \(\sigma(i) > \sigma(i + 1) \)).

Theorem 5. The class of permutations obtained after one W- or WM-duplication of the identity followed by \(p \) W-duplications is the union of the two classes: (i) permutations having at most \(2^p - 1 \) valleys and, (ii) permutations with at most \(2^{p+1} - 1 \) descents.

Proof. After one W- or WM-duplication of the identity we obtain the union of the class of permutations without valley with the class of permutations with at most one descent. A straightforward induction on \(p \) allows us to obtain the result using Theorems 1 and 4. \(\square \)

Corollary 3. The class \(C'(p) \) of permutations obtained after one W- or WM-duplication of the identity followed by \(p \) W-duplications is the class of permutations avoiding the permutations of length \(3 \cdot 2^p + 1 \) having exactly \(2^p \) valleys and \(2^{p+1} \) descents.

Proof. Let \(\sigma \) be a minimal permutation which is not in \(C'(p) \). The minimality of \(\sigma \) induces that \(\tau \) does not contain any run up of size at least three. By contradiction, if it is the case then by deleting the second value of the run up, the obtained sequence is isomorphic to a permutation which is also not in \(C'(p) \). Also \(\sigma \) cannot begin by an ascent for the same reasons. The permutation \(\sigma \) necessarily has \(2^p \) valleys and \(2^{p+1} \) descents. Indeed, if \(\sigma \) contains at least \(2^{p+1} + 1 \) descents, it contains a run down of length at least three which contradicts the fact that \(\sigma \) is minimal. A simple calculation allows us to show that \(\sigma \) is necessarily of length \(3 \cdot 2^p + 1 \). \(\square \)

For example, \(C'(0) = S(4132, 3142, 4312, 3241, 3214, 4231, 4213, 2143) \); we have computed the cardinality of the basis of \(C'(1) \), which is 720. In the same way, we have the more general corollary:

Corollary 4. The class of permutations having at most \(p \) valleys and at most \(2p + 1 \) descents is the class of permutations avoiding the permutations of length \(3p + 4 \) having exactly \(p + 1 \) valleys and \(2p + 2 \) descents.

Notice that the set of permutations of length \(3p + 4 \) having exactly \(p + 1 \) valleys and \(2p + 2 \) descents is also the set of permutations with the same length, the same number of valleys and where every ascent is immediately preceded by a descent (which defines a valley). This set was studied by Shapiro et al. [18] (see also the sequence A101280 in [19]). Indeed, they enumerate the permutations of length \(n \) having \(k \) peaks and with the additional property that every ascent is immediately followed by a descent. Thus, the cardinality of our set is obtained when \(n = 3p + 4 \) and \(k = p + 1 \). For instance, the first cardinalities for \(p = 0, 1, 2, 3, 4 \) are 8, 720, 230144, 179266560, 277662253056.

5. Further research directions

In this paper, the whole mirror duplication model is studied. However, many relative open problems still need to be considered. For example, let \(\sigma_1 \) and \(\sigma_2 \) be two permutations in \(S_n \). Can one exhibit an efficient algorithm to compute the permutation \(\pi \) which minimizes the sum \(d(\pi, \sigma_1) + d(\pi, \sigma_2) \) where \(d(\pi, \sigma) \) is the minimum of WM-duplication steps required to transform \(\pi \) into \(\sigma \)? Can one characterize the class of avoiding permutations corresponding to the permutations obtained from the identity after one W-duplication followed by \(p \) WM-duplications? More generally, can we characterize the permutations obtained after \(p \) steps of either W- or WM-duplications? Can one obtain similar results with the tandem mirror duplication model: the mirror of the duplicated part (of size \(K \)) is inserted immediately after the original portion and we apply the loss procedure.
Acknowledgements

We would like to thank the anonymous referee and Vincent Vajnovszki for their constructive remarks which have greatly improved this paper.

References