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Abstract

In this note we consider a series of lattices that are enumerated by the well-known Catalan
numbers. For each of these lattices, we exhibit a matching in a constructive way.
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1 INTRODUCTION

Given a lattice L, we denote the zero (resp. unit) by 0 (resp. 1) if it exists. The meet and the join
of (x, y) are denoted respectively x ∧ y and x ∨ y. x ∈ L is a join (resp. meet)-irreducible element
if x = a ∨ b (resp. x = a ∧ b) implies x = a or x = b. In other words, join (resp. meet)-irreducible
elements have a unique lower (resp. upper) cover. Given a finite lattice L, let J(L) (resp. M(L))
denote the set of nonzero join-irreducible (resp. nonunit meet-irreducible) elements of L. We say that
L has a matching σ if σ is a map of J(L)∪{0} to M(L)∪{1} which is one-to-one and verifies j ≤ σ(j)
for each join-irreducible j [2, 8, 16]. Kung has proved that every consistent lattice has a matching [8].
In this note, we exhibit matchings for three Catalan lattices, i.e. lattices which are enumerated by the
well-known Catalan numbers. The three sets of combinatorial objects which are endowed with a lattice
structure are respectively the well-formed parentheses strings, the binary trees and the noncrossing
partitions. We adopt a constructive point of view. Indeed we build explicit matchings by giving precise
constructions.
For the first two lattices often used in computer science [4, 13, 22], the main idea follows [6, p. 83].
Let C be a particular maximal chain in the lattice L. Let assume that the length of C is equal to
|J(L)|. For j ∈ J(L), let s(j) be the smallest member of C such that j ≤ s(j). We thereby build a
one-to-one map s of J(L) to C − {0}. For m ∈ M(L), let t(m) be the greatest member of C such
that t(m) ≤ m. We thereby build a one-to-one map of M(L) to C − {1}. Using the above bijections,
a matching in L can be constructed.
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2 MATCHINGS IN LATTICES OF WELL-FORMED PARENTHE-

SES STRINGS

A well-formed parentheses string (w.f.p. string in short) is a word on the alphabet {(, )} generated by
the grammar S → (S)|SS|λ where λ is the empty word. We denote by Pn the set of w.p.f. strings
with n open and n close parentheses. It is well-known that |Pn| = cn where cn =

(2n
n

)
/(n + 1) is

the nth Catalan number. Let → denote the adjacent parentheses interchange, i.e. we write w → w ′

(w,w′ ∈ Pn) if there exist x and y ∈ {(, )}+ such that w = x)(y and w′ = x()y. Thus we obtain w′

from w by interchanging two adjacent parentheses. Let
∗
→ be the reflexive transitive closure of →.

In order to characterize
∗
→, we use the following coding introduced in [15]. Let define the P-sequence

of w ∈ Pn as the integer sequence (pw(1), . . . , pw(n)) where pw(i) is the number of open parenthe-
ses written before the ith close parenthesis of w. For example, if w = (((()()))(()))() ∈ P8 then
pw = (4, 5, 5, 5, 7, 7, 7, 8).
An n-integer sequence p is the P-sequence of a w.f.p. string of Pn iff p(n) = n and for all i ∈ [1, n−1] :
i ≤ p(i) ≤ p(i + 1) [15]. We have shown in [4] the following characterization:

Theorem 1 For all w,w′ ∈ Pn we have w
∗
→ w′ iff for all i ∈ [1, n] : pw(i) ≤ pw′(i) .

(Pn,
∗
→) is a distributive lattice with 0 and 1 for all n, which is graded by the rank function

r(w) =
∑n

i=1 pw(i). It is well-known that every distributive lattice has a matching [2].
We have p0 = (1, 2, 3, . . . , n) and p1 = (n, n, n, . . . , n). The P-sequences of the meet and the
join of w and w′ ∈ Pn are respectively computed by pw∧w′(i) = min(pw(i), pw′(i)) and pw∨w′(i) =
max(pw(i), pw′(i)) for all i ∈ [1, n]. In short, we write pw∧w′ = min(pw, pw′) and pw∨w′ = max(pw, pw′).

Theorem 2 w is a non-zero join-irreductible element of Pn iff there exist k ∈ [1, n] and l ∈ [2, n] such
that pw = (1, 2, . . . , k − 1, k + l − 1, . . . , k + l − 1

︸ ︷︷ ︸

l

, k + l, k + l + 1, . . . , n).

Proof. Let w 6= 0 be a join-irreducible element of Pn. Thus we have {i ∈ [1, n]|pw(i) > i} 6= ∅ since
pw 6= (1, 2, 3, . . . , n). Let denote i1 = min{i ∈ [1, n]|pw(i) > i} and i2 = max{i ∈ [1, n]|pw(i) > i}.
Suppose that pw(i1) < pw(i2). Let us denote i = max{j ∈ [i1, i2[|pw(j) < pw(i2)}. Then we obtain the
following decomposition: pw = max(p′, p′′) with p′ = (pw(1), . . . , pw(i1) − 1, . . . , pw(i2), . . . , pw(n))
and p′′ = (pw(1), . . . , pw(i1), . . . , pw(i), pw(i2)−1, . . . , pw(i2)−1, pw(i2 +1), . . . , pw(n)) which contra-
dicts the fact that w has a unique lower cover. Therefore pw(i1) = pw(i2) = i2 + 1 and we can write
pw = (1, . . . , i1−1, i2+1, . . . , i2+1, . . . , n). The result holds with i1 = k and l = i2−i1+2. Conversely,
if the P-sequence of w is pw = (1, . . . , k − 1, k + l − 1, . . . , k + l − 1, k + l, . . . , n), only one w ′ satisfies
r(w′) = r(w) − 1. This w′ verifies pw′ = (1, . . . , k − 1, k + l − 2, k + l − 1, . . . , k + l − 1, k + l, . . . , n).

Theorem 3 w is a non-unit meet-irreducible element of Pn iff there exist k and l with
1 ≤ l ≤ k ≤ n − 1 such that pw = (k, k, . . . , k

︸ ︷︷ ︸

l

, n, . . . , n).

Proof. Let w 6= 1 be a meet-irreducible element of Pn. Thus we have {i ∈ [1, n − 1]|pw(i) <
pw(i + 1)} 6= ∅ since pw 6= (n, n, . . . , n). Let us denote i1 = min{i ∈ [1, n − 1]|pw(i) < pw(i + 1)}
and i2 = max{i ∈ [1, n − 1]|pw(i) < pw(i + 1)}. In the case where i1 < i2, pw could be writ-
ten as pw = min(p′, p′′) with p′ = (pw(1), . . . , pw(i1 − 1), pw(i1) + 1, . . . , pw(i2), . . . , pw(n)) and
p′′ = (pw(1), . . . , pw(i1), . . . , pw(i2−1), pw(i2)+1, pw(i2+1), . . . , pw(n)), contradicting the existence of
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a unique upper cover. Thus i1 = i2 holds and denoting pw(i2) = k, we have pw = (k, . . . , k, n, . . . , n).
Conversely if the P-sequence of w is pw = (k, k, . . . , k, n, n, . . . , n), only one w′ satisfies r(w′) =
r(w) + 1. Thus w′ verifies pw′ = (k, . . . , k, k + 1, n, . . . , n).

Remark. The number of join-irreductibles is equal to the number of meet-irreductibles, namely
n(n−1)

2 . Furthermore, G. Gratzer [6, p. 83] shows that in a distributive lattice, any maximal chain has
length |J(L)|. The tool of this proof is using for constructing a matching of Pn.

Theorem 4 The map σ : J(L) ∪ {0} −→ M(L) ∪ {1} defined by:

for k ∈ [1, n]: σ((1, 2, · · · , k − 1, n, · · · , n)) = (k − 1, · · · , k − 1
︸ ︷︷ ︸

k−1

, n, · · · , n)

and if k + l − 1 < n with l ∈ [2, n]:

σ((1, 2, . . . , k − 1, k + l − 1, . . . , k + l − 1
︸ ︷︷ ︸

l

, k + l, . . . , n)) = (k + l − 1, . . . , k + l − 1
︸ ︷︷ ︸

k

, n, . . . , n
︸ ︷︷ ︸

n−k

)

is a matching in L.

Proof. The construction method consists in choosing a maximal chain C of Pn, then in constructing
a non-decreasing one-to-one map of J(L)∪ {0} to C and finally in constructing a non-increasing one-
to-one map of M(L) ∪ {1} to C.
We choose a maximal chain C = {0 = c0 → c1 → . . . → cn(n−1)/2 = 1} in Pn in the following way. We
start with c0 = 0 and for each w.f.p. string w of C, we apply the adjacent parentheses interchange
)(→ () on the rightmost occurrence )( in w. For example in P5: ()()()()() → ()()()(()) → ()()(()()) →
()()((())) → ()(()(())) → ()((()())) → ()(((()))) → (()((()))) → ((()(()))) → (((()()))) → ((((())))). See
also the bold path in Figure 1.
A non-unit w.f.p. string of this chain C is characterized by a P-sequence of the form (1, 2, . . . , k −
1, pk, n, . . . , n) with 1 ≤ k ≤ n − 1 and k ≤ pk ≤ n − 1.
For j ∈ J(L) ∪ {0}, let s(j) be the smallest member of C such that j ≤ s(j). Thus s(0) = 0 and
s((1, 2, . . . , k − 1, k + l − 1, . . . , k + l − 1

︸ ︷︷ ︸

l

, k + l, . . . , n)) = (1, 2, . . . , k − 1, k + l − 1, n, . . . , n). s is

obviously injective and thus is a one-to-one map. For m ∈ M(L) ∪ {1}, let t(m) be the greatest
member of C such that t(m) ≤ m. Thus t(1) = 1 and if k 6= n, l ≥ 1 then

t((k, k, . . . , k
︸ ︷︷ ︸

l

, n, . . . , n)) = (1, . . . , l − 1, k, n, . . . , n
︸ ︷︷ ︸

n−l

). t is also injective and thus is a one-to-one

map. t−1 is defined by t−1(1) = 1 and if k + l − 1 6= n, t−1((1, 2, . . . , k − 1, k + l − 1, n, . . . , n)) =
(k + l − 1, . . . , k + l − 1
︸ ︷︷ ︸

k

, n, . . . , n) and t−1((1, 2, · · · , k − 1, n, · · · , n)) = (k − 1, · · · , k − 1
︸ ︷︷ ︸

k−1

, n, · · · , n).

Therefore the map σ = t−1 ◦ s defined previously is a matching in Pn.
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Figure 1: The distributive lattice P4

3 MATCHINGS IN TAMARI LATTICES

The so-called Tamari lattices are orderings of w.f.p. words that were introduced by Tamari fifty years
ago [20] and later shown to be lattices [1, 5, 10, 11]. The Tamari lattices can be described in many
ways via the known bijections between families of Catalan combinatorial objects [3]. A system that
is isomorphic to Tamari lattices is that of triangulations of a polygon related by the diagonal flip
operation [19]. Another system that is isomorphic to Tamari lattices too is that of binary trees related
by rotations [11, 12, 14].
A binary tree is a rooted, ordered tree in which every internal node © has exactly two sons. External
nodes or leaves have no children and are denoted 2. We denote by B the set of binary trees. We
denote by TL and TR the left and right subtrees of T ∈ B if T 6= 2. In Polish notation, we can write
T = ©TLTR.
We denote by Bn the set of binary trees with n internal nodes (and thus with n + 1 leaves). It is
well-known that |Bn| = cn.
The leaves of a binary tree T are numbered by a preorder traversal of T (i.e. from left to right). The
weight |T | of a tree T is the number of leaves of T . Given T ∈ Bn, the weight sequence of T is the
integer sequence wT = (wT (1), . . . , wT (n)) where wT (i) is the weight of the largest subtree of T whose
last leaf is i [11, 14]. Rotation is a transformation → on Bn such that a subtree ©T1 © T2T3 of a
tree of Bn is replaced by the subtree ©© T1T2T3 where T1, T2, T3 ∈ B. We have proved in [11] the
following characterization:

Theorem 5 Given T and T ′ ∈ Bn, we have T
∗
→ T ′ iff wT (i) ≤ wT ′(i) for all i ∈ [1, n].
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(Bn,
∗
→) is a semidistributive lattice for all n, called Tamari lattice, with 0 and 1 [1, 5, 10, 11].

Thus it is a consistent lattice [21] and therefore it has a matching [8]. We have w0 = (1, 1, . . . , 1) and
w1 = (1, 2, 3, . . . , n). The weight sequence of the meet of T and T ′ is easy to compute: wT∧T ′(i) =
min(wT (i), wT ′(i)). See [13] for computing the join. The following characterization can be shown
easily:

Theorem 6 A n-integer sequence w is the weight sequence of a tree of Bn iff for all i ∈ [1, n]:

(i) 1 ≤ wi ≤ i and

(ii) if j ∈ [i − wi + 1, i] then i − wi ≤ j − wj.

Theorem 7 T is a join-irreducible element of Bn iff there exist i and k ∈ [2, n] such that wT (i) = k
with k ≤ i and wT (j) = 1 for all j 6= i.

Proof. All elements of a weight sequence of a tree T are equal to 1 except one iff there exists a
unique occurrence ©© of two consecutive internal nodes in the Polish notation of T . Thus T has a
unique lower cover.

Theorem 8 T is a meet-irreducible element of Bn iff there exist k, l ∈ [1, n] such that
wT = (1, 2, . . . , k, 1, 2, . . . , l, k + l + 1, . . . , n).

Proof. A tree T has a unique upper cover iff there exists a unique occurrence 2© of a leaf followed
by an internal node in the Polish notation of T . If k denotes the number of this leaf, then wT (i) = i
for 1 ≤ i ≤ k. This internal node is the root of a subtree T ′. If l = |T ′

L|, then wT (i) = i − k for
k + 1 ≤ i ≤ k + l.

Remark. The number of join-irreductibles is equal to the number of the meet-irreductibles [1, 10],

namely n(n−1)
2 . Furthermore, Bn has a maximal chain of length |J(L)| (see [10, 13]). The previous

tool is now applied once again.

Theorem 9 The map σ : J(L) ∪ {0} −→ M(L) ∪ {1} defined by :

σ(0) = h(1, · · · , 1) = (1, 2, · · · , n − 1, 1)

for i ≥ 2:

σ((1, 1, · · · , 1
︸ ︷︷ ︸

i−1

, 2, 1, · · · , 1)) = (1, 2, 3, · · · , i − 2, 1, 2, · · · , n − i + 2)

and if 3 ≤ k ≤ i:

σ((1, 1, · · · , 1
︸ ︷︷ ︸

i−1

, k, 1, · · · , 1)) = (1, 2, 3, · · · , i − k + 1, 1, 2, · · · , k − 2, i, i + 1, · · · , n)

is a matching in L.
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Proof. First we choose a chain C of maximal length (|J(L)|). The smallest element of C is 0.
In order to obtain the successor of a tree T , we apply the rotation transformation on the rightmost
occurrence of 2© in the Polish notation of T . For example in B5, we obtain the maximal chain:
11111 → 11112 → 11113 → 11123 → 11124 → 11134 → 11234 → 11235 → 11245 → 11345 → 12345.
See also the bold path in Figure 2. The non-unit trees of this maximal chain can be characterized by
a weight sequence of the form:

ck,l = (1, · · · , 1
︸ ︷︷ ︸

k

, 1, 2, · · · , l
︸ ︷︷ ︸

l

, l + 2, l + 3, · · · , n − k + 1) (1)

with k ≥ 1, l ≥ 1 and k + l ≤ n. Let denote c0,n = (1, 2, · · · , n) = w1.
As in the case of the previous distributive lattice, we construct a non-decreasing one-to-one map f

between J(L)∪{0} and the chain C and then a non-increasing one-to-one map g between M(L)∪{1}
and this chain C. For the first bijection s, we associate to an element j of J(L) ∪ {0} the smallest
element of the chain such that j ≤ s(j) . This allows us to define f between J(L) ∪ {0} and C by
f(0) = w0 = cn−1,1, if 2 < k ≤ i then f((1, 1, · · · , 1, 1

︸ ︷︷ ︸

i−1

, k, 1, 1, · · · , 1)) = (1, · · · , 1
︸ ︷︷ ︸

i−k+1

, 1, 2, · · · , k − 2
︸ ︷︷ ︸

k−2

, k, k+

1, · · · , n − i + k) = ci−k+1,k−2

and f((1, 1, · · · , 1
︸ ︷︷ ︸

i−1

, 2, 1, · · · , 1)) = (1, 1, · · · , 1
︸ ︷︷ ︸

i−1

, 2, 3, · · · , n − i + 2) = ci−2,n−i+2

Similarly, we associate to an element of M(L) ∪ {1} the greatest element of the chain which is
lower than it. The second non-increasing bijection g is therefore defined between M(L) ∪ {1} and C
by:

g(1) = 1 and if k ≥ 1, l ≥ 1 (k + l ≤ n) then g((1, 2, · · · , k, 1, 2, · · · , l, k + l + 1, · · · , n)) =
(1, · · · , 1
︸ ︷︷ ︸

k

, 1, 2, · · · , l
︸ ︷︷ ︸

l

, l + 2, l + 3, · · · , n − k + 1) = ck,l.

The inverse function is therefore a non-decreasing one-to-one map and is defined by : g−1(1) = 1

and g−1(ck,l) = (1, 2, · · · , k − 1, k
︸ ︷︷ ︸

k

, 1, 2, · · · , l
︸ ︷︷ ︸

l

, k+ l−1, · · · , n). Thus σ = g−1 ◦f constitutes a matching

in L.

4 MATCHINGS IN LATTICES OF NONCROSSING PARTITIONS

A partition B1/B2/ . . . /Bk of {1, 2, . . . , n} is called noncrossing if there do not exist four numbers
a < b < c < d such that a, c ∈ Bi and b, d ∈ Bj with i 6= j. For example 12579/34/6/8 is a noncrossing
partition of {1, 2, . . . , 9} (ncp in short) while 13568/2479 is crossing. We denote NCn the set of all
ncp of {1, 2, . . . , n}. We have |NCn| = cn. The refinement order ≤ is defined on NCn in the following
manner: two ncp p and p′ satisfy p ≤ p′ if every block of p is a subset of some block of p′. NCn

is a graded lattice under refinement with 0 and 1 [3, 7, 17, 18]. We have 0 = 1/2/3/ . . . /n and
1 = 123 . . . n. The following characterizations can be proved easily:

Theorem 10 p is a join-irreducible element of NCn iff p = B1/B2/ . . . /Bn−1 with |B1| = 2 and
|Bi| = 1 for 2 ≤ i ≤ n − 1. p is a meet-irreducible element of NCn iff p = B1/B2.

Theorem 11 The map σ : J(L) −→ M(L) defined by :
σ({i, n} /

j /∈{i,n}

{j}) = {i + 1}/{j, j 6= i + 1} for i ∈ [1, n − 2]
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Figure 2: The Tamari lattice B4

σ({n − 1, n} /
j /∈{n−1,n}

{j}) = {1}/{j, j 6= 1}

σ({i, j} /
k/∈{i,j}

{k}) = {i, i + 1, · · · , j}/{k, k /∈ [i, j]} for 1 ≤ i < j ≤ n − 1

is a matching in NCn.

Proof. We just need to verify the surjectivity of σ. Let A = A1/A2 be a ncp in M(L). If there
exists i ∈ {1, 2} such that |Ai| = 1, by definition of σ, A is in the range of σ. Let us suppose now that
there does not exist i ∈ {1, 2} such that |Ai| = 1 and that n is in the block A2. Let i = min{k ∈ A1}
and j = max{k ∈ A1}. Thus, we obtain i < j < n. Now, according to the definition of a ncp, there
is no element c in A2 such that i < c < j < n. This implies that all integers between i and j are in
A1. So, we can write A1 = {i, i + 1, · · · , j}. Therefore, we have σ({i, j} /

k/∈{i,j}

{k}) = {i, i + 1, · · · , j}/

{k, k /∈ [i, j]} and thus σ is a bijection.
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[14] J.M. Pallo, An algorithm to compute the Möbius function of the rotation lattice of binary trees,
Theoretical Informatics and Applications, 27 (1993) 341-348.

[15] J.M. Pallo, R. Racca, A note on generating binary trees in A-order and B-order, Intern. J.
Computer Math., 18 (1985) 27-39.

[16] K. Reuter, Matchings for linearly indecomposable modular lattices, Discrete Math., 63 (1987)
245-247.

8



[17] R. Simion, Noncrossing partitions, Discrete Math., 217 (2000) 367-409.

[18] R. Simion, D. Ullman, On the structure of the lattice of noncrossing partitions, Discrete Math.,
98 (1991) 193-206.

[19] D.D. Sleator, R.E. Tarjan, W.P. Thurston, Rotation distance, triangulations and hyperbolic ge-
ometry, J. Amer. Math. Soc., 1 (1988) 647-681.
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