MATCHINGS IN THREE CATALAN LATTICES

J.L. BARIL and J.M. PALLO Université de Bourgogne. L.E.2.I. B.P 47870 21078 DIJON-Cedex FRANCE

March 19, 2004

Abstract

In this note we consider a series of lattices that are enumerated by the well-known Catalan numbers. For each of these lattices, we exhibit a matching in a constructive way.

KEY WORDS: Lattices, matchings, well-formed parentheses strings, binary trees.

C.R. CATEGORIES: G.2.1. G.2.2.

1 INTRODUCTION

Given a lattice L, we denote the zero (resp. unit) by **0** (resp. **1**) if it exists. The meet and the join of (x, y) are denoted respectively $x \wedge y$ and $x \vee y$. $x \in L$ is a join (resp. meet)-irreducible element if $x = a \vee b$ (resp. $x = a \wedge b$) implies x = a or x = b. In other words, join (resp. meet)-irreducible elements have a unique lower (resp. upper) cover. Given a finite lattice L, let J(L) (resp. M(L)) denote the set of nonzero join-irreducible (resp. nonunit meet-irreducible) elements of L. We say that L has a matching σ if σ is a map of $J(L) \cup \{0\}$ to $M(L) \cup \{1\}$ which is one-to-one and verifies $j \leq \sigma(j)$ for each join-irreducible j [2, 8, 16]. Kung has proved that every consistent lattice has a matching [8]. In this note, we exhibit matchings for three Catalan lattices, i.e. lattices which are enumerated by the well-known Catalan numbers. The three sets of combinatorial objects which are endowed with a lattice structure are respectively the well-formed parentheses strings, the binary trees and the noncrossing partitions. We adopt a *constructive* point of view. Indeed we build *explicit* matchings by giving precise constructions.

For the first two lattices often used in computer science [4, 13, 22], the main idea follows [6, p. 83]. Let C be a particular maximal chain in the lattice L. Let assume that the length of C is equal to |J(L)|. For $j \in J(L)$, let s(j) be the smallest member of C such that $j \leq s(j)$. We thereby build a one-to-one map s of J(L) to $C - \{0\}$. For $m \in M(L)$, let t(m) be the greatest member of C such that $t(m) \leq m$. We thereby build a one-to-one map of M(L) to $C - \{1\}$. Using the above bijections, a matching in L can be constructed.

2 MATCHINGS IN LATTICES OF WELL-FORMED PARENTHE-SES STRINGS

A well-formed parentheses string (w.f.p. string in short) is a word on the alphabet $\{(,)\}$ generated by the grammar $S \to (S)|SS|\lambda$ where λ is the empty word. We denote by P_n the set of w.p.f. strings with n open and n close parentheses. It is well-known that $|P_n| = c_n$ where $c_n = \binom{2n}{n}/(n+1)$ is the nth Catalan number. Let \to denote the adjacent parentheses interchange, i.e. we write $w \to w'$ $(w, w' \in P_n)$ if there exist x and $y \in \{(,)\}^+$ such that w = x)(y and w' = x()y. Thus we obtain w'from w by interchanging two adjacent parentheses. Let $\stackrel{*}{\to}$ be the reflexive transitive closure of \to .

In order to characterize $\stackrel{*}{\rightarrow}$, we use the following coding introduced in [15]. Let define the P-sequence of $w \in P_n$ as the integer sequence $(p_w(1), \ldots, p_w(n))$ where $p_w(i)$ is the number of open parentheses written before the *i*th close parenthesis of w. For example, if $w = (((())))(())(()))() \in P_8$ then $p_w = (4, 5, 5, 5, 7, 7, 7, 8)$.

An *n*-integer sequence p is the P-sequence of a w.f.p. string of P_n iff p(n) = n and for all $i \in [1, n-1]$: $i \leq p(i) \leq p(i+1)$ [15]. We have shown in [4] the following characterization:

Theorem 1 For all $w, w' \in P_n$ we have $w \xrightarrow{*} w'$ iff for all $i \in [1, n] : p_w(i) \leq p_{w'}(i)$.

 $(P_n, \stackrel{*}{\rightarrow})$ is a distributive lattice with **0** and **1** for all *n*, which is graded by the rank function $r(w) = \sum_{i=1}^{n} p_w(i)$. It is well-known that every distributive lattice has a matching [2].

We have $p_0 = (1, 2, 3, ..., n)$ and $p_1 = (n, n, n, ..., n)$. The P-sequences of the meet and the join of w and $w' \in P_n$ are respectively computed by $p_{w \wedge w'}(i) = min(p_w(i), p_{w'}(i))$ and $p_{w \vee w'}(i) = max(p_w(i), p_{w'}(i))$ for all $i \in [1, n]$. In short, we write $p_{w \wedge w'} = min(p_w, p_{w'})$ and $p_{w \vee w'} = max(p_w, p_{w'})$.

Theorem 2 w is a non-zero join-irreductible element of P_n iff there exist $k \in [1, n]$ and $l \in [2, n]$ such that $p_w = (1, 2, ..., k - 1, \underbrace{k+l-1, \ldots, k+l-1}_{l}, k+l, k+l+1, \ldots, n)$.

Proof. Let $w \neq \mathbf{0}$ be a join-irreducible element of P_n . Thus we have $\{i \in [1,n] | p_w(i) > i\} \neq \emptyset$ since $p_w \neq (1,2,3,\ldots,n)$. Let denote $i_1 = min\{i \in [1,n] | p_w(i) > i\}$ and $i_2 = max\{i \in [1,n] | p_w(i) > i\}$. Suppose that $p_w(i_1) < p_w(i_2)$. Let us denote $i = max\{j \in [i_1,i_2[| p_w(j) < p_w(i_2)\}$. Then we obtain the following decomposition: $p_w = max(p',p'')$ with $p' = (p_w(1),\ldots,p_w(i_1)-1,\ldots,p_w(i_2),\ldots,p_w(n))$ and $p'' = (p_w(1),\ldots,p_w(i_1),\ldots,p_w(i_2)-1,\ldots,p_w(i_2)-1,p_w(i_2+1),\ldots,p_w(n))$ which contradicts the fact that w has a unique lower cover. Therefore $p_w(i_1) = p_w(i_2) = i_2 + 1$ and we can write $p_w = (1,\ldots,i_1-1,i_2+1,\ldots,i_2+1,\ldots,n)$. The result holds with $i_1 = k$ and $l = i_2-i_1+2$. Conversely, if the P-sequence of w is $p_w = (1,\ldots,k-1,k+l-1,\ldots,k+l-1,\ldots,k+l-1,\ldots,k+l-1,k+l,\ldots,n)$, only one w' satisfies r(w') = r(w) - 1. This w' verifies $p_{w'} = (1,\ldots,k-1,k+l-2,k+l-1,\ldots,k+l-1,k+l,\ldots,n)$.

Theorem 3 w is a non-unit meet-irreducible element of P_n iff there exist k and l with $1 \le l \le k \le n-1$ such that $p_w = (\underbrace{k, k, \ldots, k}_{l}, n, \ldots, n)$.

Proof. Let $w \neq \mathbf{1}$ be a meet-irreducible element of P_n . Thus we have $\{i \in [1, n-1] | p_w(i) < p_w(i+1)\} \neq \emptyset$ since $p_w \neq (n, n, \dots, n)$. Let us denote $i_1 = \min\{i \in [1, n-1] | p_w(i) < p_w(i+1)\}$ and $i_2 = \max\{i \in [1, n-1] | p_w(i) < p_w(i+1)\}$. In the case where $i_1 < i_2$, p_w could be written as $p_w = \min(p', p'')$ with $p' = (p_w(1), \dots, p_w(i_1-1), p_w(i_1) + 1, \dots, p_w(i_2), \dots, p_w(n))$ and $p'' = (p_w(1), \dots, p_w(i_2-1), p_w(i_2) + 1, p_w(i_2+1), \dots, p_w(n))$, contradicting the existence of

a unique upper cover. Thus $i_1 = i_2$ holds and denoting $p_w(i_2) = k$, we have $p_w = (k, \ldots, k, n, \ldots, n)$. Conversely if the P-sequence of w is $p_w = (k, k, \ldots, k, n, n, \ldots, n)$, only one w' satisfies r(w') = r(w) + 1. Thus w' verifies $p_{w'} = (k, \ldots, k, k+1, n, \ldots, n)$.

Remark. The number of join-irreductibles is equal to the number of meet-irreductibles, namely $\frac{n(n-1)}{2}$. Furthermore, G. Gratzer [6, p. 83] shows that in a distributive lattice, any maximal chain has length |J(L)|. The tool of this proof is using for constructing a matching of P_n .

Theorem 4 The map $\sigma: J(L) \cup \{\mathbf{0}\} \longrightarrow M(L) \cup \{\mathbf{1}\}$ defined by:

for
$$k \in [1, n]$$
: $\sigma((1, 2, \dots, k - 1, n, \dots, n)) = (\underbrace{k - 1, \dots, k - 1}_{k-1}, n, \dots, n)$

and if k + l - 1 < n with $l \in [2, n]$:

$$\sigma((1,2,\ldots,k-1,\underbrace{k+l-1,\ldots,k+l-1}_{l},k+l,\ldots,n)) = (\underbrace{k+l-1,\ldots,k+l-1}_{k},\underbrace{n,\ldots,n}_{n-k})$$

is a matching in L.

Proof. The construction method consists in choosing a maximal chain C of P_n , then in constructing a non-decreasing one-to-one map of $J(L) \cup \{0\}$ to C and finally in constructing a non-increasing one-to-one map of $M(L) \cup \{1\}$ to C.

A non-unit w.f.p. string of this chain C is characterized by a P-sequence of the form $(1, 2, ..., k - 1, p_k, n, ..., n)$ with $1 \le k \le n - 1$ and $k \le p_k \le n - 1$.

For $j \in J(L) \cup \{0\}$, let s(j) be the smallest member of C such that $j \leq s(j)$. Thus s(0) = 0 and $s((1, 2, ..., k - 1, \underbrace{k+l-1, ..., k+l-1}_{l}, k+l, ..., n)) = (1, 2, ..., k-1, k+l-1, n, ..., n)$. s is

obviously injective and thus is a one-to-one map. For $m \in M(L) \cup \{1\}$, let t(m) be the greatest member of C such that $t(m) \leq m$. Thus t(1) = 1 and if $k \neq n, l \geq 1$ then

$$t(\underbrace{(k,k,\ldots,k}_{l},n,\ldots,n)) = (1,\ldots,l-1,k,\underbrace{n,\ldots,n}_{n-l})$$
. t is also injective and thus is a one-to-one

map. t^{-1} is defined by $t^{-1}(1) = 1$ and if $k + l - 1 \neq n$, $t^{-1}((1, 2, \dots, k - 1, k + l - 1, n, \dots, n)) = (\underbrace{k + l - 1, \dots, k + l - 1}_{k}, n, \dots, n)$ and $t^{-1}((1, 2, \dots, k - 1, n, \dots, n)) = (\underbrace{k - 1, \dots, k - 1}_{k-1}, n, \dots, n)$.

Therefore the map $\sigma = t^{-1} \circ s$ defined previously is a matching in P_n .

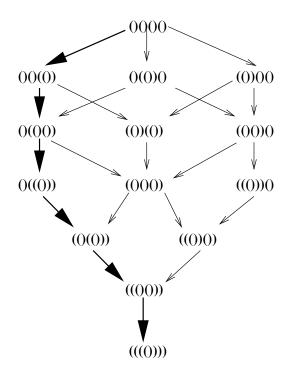


Figure 1: The distributive lattice P_4

3 MATCHINGS IN TAMARI LATTICES

The so-called Tamari lattices are orderings of w.f.p. words that were introduced by Tamari fifty years ago [20] and later shown to be lattices [1, 5, 10, 11]. The Tamari lattices can be described in many ways via the known bijections between families of Catalan combinatorial objects [3]. A system that is isomorphic to Tamari lattices is that of triangulations of a polygon related by the diagonal flip operation [19]. Another system that is isomorphic to Tamari lattices too is that of binary trees related by rotations [11, 12, 14].

A binary tree is a rooted, ordered tree in which every internal node \bigcirc has exactly two sons. External nodes or leaves have no children and are denoted \Box . We denote by B the set of binary trees. We denote by T_L and T_R the left and right subtrees of $T \in B$ if $T \neq \Box$. In Polish notation, we can write $T = \bigcirc T_L T_R$.

We denote by B_n the set of binary trees with n internal nodes (and thus with n + 1 leaves). It is well-known that $|B_n| = c_n$.

The leaves of a binary tree T are numbered by a preorder traversal of T (i.e. from left to right). The weight |T| of a tree T is the number of leaves of T. Given $T \in B_n$, the weight sequence of T is the integer sequence $w_T = (w_T(1), \ldots, w_T(n))$ where $w_T(i)$ is the weight of the largest subtree of T whose last leaf is i [11, 14]. Rotation is a transformation \rightarrow on B_n such that a subtree $\bigcirc T_1 \bigcirc T_2T_3$ of a tree of B_n is replaced by the subtree $\bigcirc \bigcirc T_1T_2T_3$ where $T_1, T_2, T_3 \in B$. We have proved in [11] the following characterization:

Theorem 5 Given T and $T' \in B_n$, we have $T \xrightarrow{*} T'$ iff $w_T(i) \leq w_{T'}(i)$ for all $i \in [1, n]$.

 $(B_n, \stackrel{*}{\rightarrow})$ is a semidistributive lattice for all n, called Tamari lattice, with **0** and **1** [1, 5, 10, 11]. Thus it is a consistent lattice [21] and therefore it has a matching [8]. We have $w_0 = (1, 1, ..., 1)$ and $w_1 = (1, 2, 3, ..., n)$. The weight sequence of the meet of T and T' is easy to compute: $w_{T \wedge T'}(i) = min(w_T(i), w_{T'}(i))$. See [13] for computing the join. The following characterization can be shown easily:

Theorem 6 A n-integer sequence w is the weight sequence of a tree of B_n iff for all $i \in [1, n]$:

- (i) $1 \leq w_i \leq i$ and
- (*ii*) if $j \in [i w_i + 1, i]$ then $i w_i \leq j w_j$.

Theorem 7 T is a join-irreducible element of B_n iff there exist i and $k \in [2, n]$ such that $w_T(i) = k$ with $k \leq i$ and $w_T(j) = 1$ for all $j \neq i$.

Proof. All elements of a weight sequence of a tree T are equal to 1 except one iff there exists a unique occurrence $\bigcirc \bigcirc$ of two consecutive internal nodes in the Polish notation of T. Thus T has a unique lower cover.

Theorem 8 T is a meet-irreducible element of B_n iff there exist $k, l \in [1, n]$ such that $w_T = (1, 2, ..., k, 1, 2, ..., l, k + l + 1, ..., n).$

Proof. A tree T has a unique upper cover iff there exists a unique occurrence $\Box \bigcirc$ of a leaf followed by an internal node in the Polish notation of T. If k denotes the number of this leaf, then $w_T(i) = i$ for $1 \le i \le k$. This internal node is the root of a subtree T'. If $l = |T'_L|$, then $w_T(i) = i - k$ for $k+1 \le i \le k+l$.

Remark. The number of join-irreductibles is equal to the number of the meet-irreductibles [1, 10], namely $\frac{n(n-1)}{2}$. Furthermore, B_n has a maximal chain of length |J(L)| (see [10, 13]). The previous tool is now applied once again.

Theorem 9 The map $\sigma: J(L) \cup \{0\} \longrightarrow M(L) \cup \{1\}$ defined by :

$$\sigma(0) = h(1, \cdots, 1) = (1, 2, \cdots, n - 1, 1)$$

for $i \geq 2$:

$$\sigma((\underbrace{1,1,\cdots,1}_{i-1},2,1,\cdots,1)) = (1,2,3,\cdots,i-2,1,2,\cdots,n-i+2)$$

and if $3 \leq k \leq i$:

$$\sigma((\underbrace{1,1,\cdots,1}_{i-1},k,1,\cdots,1)) = (1,2,3,\cdots,i-k+1,1,2,\cdots,k-2,i,i+1,\cdots,n)$$

is a matching in L.

Proof. First we choose a chain C of maximal length (|J(L)|). The smallest element of C is **0**. In order to obtain the successor of a tree T, we apply the rotation transformation on the rightmost occurrence of \Box in the Polish notation of T. For example in B_5 , we obtain the maximal chain: $11111 \rightarrow 11112 \rightarrow 11113 \rightarrow 11123 \rightarrow 11124 \rightarrow 11134 \rightarrow 11234 \rightarrow 11235 \rightarrow 11245 \rightarrow 11345 \rightarrow 12345.$ See also the bold path in Figure 2. The non-unit trees of this maximal chain can be characterized by a weight sequence of the form:

$$c_{k,l} = (\underbrace{1, \cdots, 1}_{k}, \underbrace{1, 2, \cdots, l}_{l}, l+2, l+3, \cdots, n-k+1)$$
(1)

with $k \ge 1, l \ge 1$ and $k + l \le n$. Let denote $c_{0,n} = (1, 2, \dots, n) = w_1$.

As in the case of the previous distributive lattice, we construct a non-decreasing one-to-one map fbetween $J(L) \cup \{\mathbf{0}\}$ and the chain C and then a non-increasing one-to-one map q between $M(L) \cup \{\mathbf{1}\}$ and this chain C. For the first bijection s, we associate to an element j of $J(L) \cup \{0\}$ the smallest element of the chain such that $j \leq s(j)$. This allows us to define f between $J(L) \cup \{0\}$ and C by $1, \cdots, n-i+k) = c_{i-k+1,k-2}$ and $f((1 \ 1 \ \cdots \ 1 \ 2 \ 1 \ \cdots \ 1)) - (1 \ 1 \ \cdots \ 1 \ 2 \ 3 \ \cdots \ n - i + 2) - c$

Similarly, we associate to an element of
$$M(L) \cup \{1\}$$
 the greatest element of the ch

hain which is lower than it. The second non-increasing bijection q is therefore defined between $M(L) \cup \{1\}$ and C by:

g(1) = 1 and if $k \ge 1, l \ge 1$ $(k + l \le n)$ then $g((1, 2, \dots, k, 1, 2, \dots, l, k + l + 1, \dots, n)) =$ $(\underbrace{1,\cdots,1}_{k},\underbrace{1,2,\cdots,l}_{l},l+2,l+3,\cdots,n-k+1)=c_{k,l}.$

The inverse function is therefore a non-decreasing one-to-one map and is defined by : $g^{-1}(1) = 1$ and $g^{-1}(c_{k,l}) = (\underbrace{1, 2, \cdots, k-1, k}_{k}, \underbrace{1, 2, \cdots, l}_{l}, k+l-1, \cdots, n)$. Thus $\sigma = g^{-1} \circ f$ constitutes a matching

in L.

MATCHINGS IN LATTICES OF NONCROSSING PARTITIONS 4

A partition $B_1/B_2/\ldots/B_k$ of $\{1, 2, \ldots, n\}$ is called noncrossing if there do not exist four numbers a < b < c < d such that $a, c \in B_i$ and $b, d \in B_j$ with $i \neq j$. For example 12579/34/6/8 is a noncrossing partition of $\{1, 2, \ldots, 9\}$ (ncp in short) while 13568/2479 is crossing. We denote NC_n the set of all ncp of $\{1, 2, \ldots, n\}$. We have $|NC_n| = c_n$. The refinement order \leq is defined on NC_n in the following manner: two ncp p and p' satisfy $p \leq p'$ if every block of p is a subset of some block of p'. NC_n is a graded lattice under refinement with **0** and **1** [3, 7, 17, 18]. We have $\mathbf{0} = 1/2/3/\ldots/n$ and $1 = 123 \dots n$. The following characterizations can be proved easily:

Theorem 10 p is a join-irreducible element of NC_n iff $p = B_1/B_2/\ldots/B_{n-1}$ with $|B_1| = 2$ and $|B_i| = 1$ for $2 \le i \le n-1$. p is a meet-irreducible element of NC_n iff $p = B_1/B_2$.

Theorem 11 The map $\sigma: J(L) \longrightarrow M(L)$ defined by : $\sigma(\{i,n\} / \{j\}) = \{i+1\} / \{j, j \neq i+1\} \text{ for } i \in [1, n-2]$

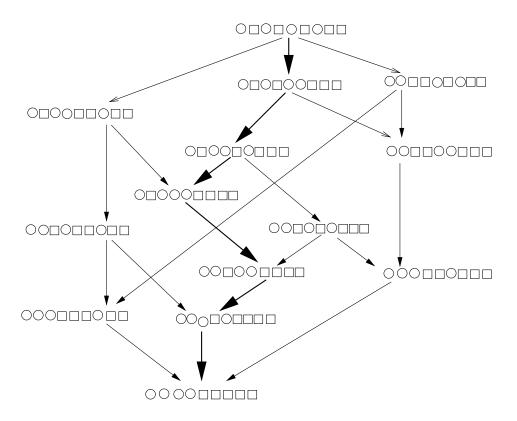


Figure 2: The Tamari lattice B_4

$$\begin{split} &\sigma(\{n-1,n\} \ / \ \{j\}) = \{1\}/\{j,j \neq 1\} \\ &\sigma(\{i,j\} \ / \ \{k\}) = \{i,i+1,\cdots,j\}/\{k,k \notin [i,j]\} \ for \ 1 \leq i < j \leq n-1 \\ &is \ a \ matching \ in \ NC_n. \end{split}$$

Proof. We just need to verify the surjectivity of σ . Let $A = A_1/A_2$ be a ncp in M(L). If there exists $i \in \{1, 2\}$ such that $|A_i| = 1$, by definition of σ , A is in the range of σ . Let us suppose now that there does not exist $i \in \{1, 2\}$ such that $|A_i| = 1$ and that n is in the block A_2 . Let $i = \min\{k \in A_1\}$ and $j = \max\{k \in A_1\}$. Thus, we obtain i < j < n. Now, according to the definition of a ncp, there is no element c in A_2 such that i < c < j < n. This implies that all integers between i and j are in A_1 . So, we can write $A_1 = \{i, i + 1, \dots, j\}$. Therefore, we have $\sigma(\{i, j\} / \{k\}) = \{i, i + 1, \dots, j\}/k \notin \{i, j\}$

 $\{k, k \notin [i, j]\}$ and thus σ is a bijection.

References

- M.K. Bennet, G. Birkhoff, Two families of Newman lattices, Algebra Universalis, 32 (1994) 115-144.
- [2] D. Duffus, Matching in modular lattices, J. Combin. Theory, 32 (1982) 303-314.
- [3] C. Germain, J. Pallo, The number of coverings in four Catalan lattices, Intern. J. Computer Math., 61 (1996) 19-28.

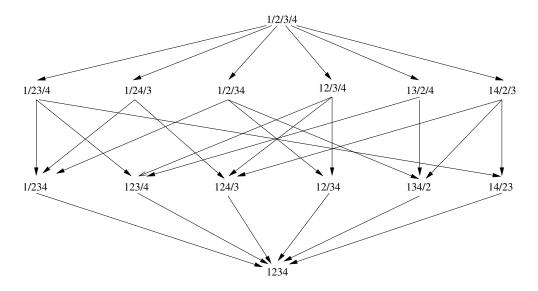


Figure 3: The lattice NC_4

- [4] C. Germain, J. Pallo, Two shortest path metrics on well-formed parentheses strings, *Inform. Process. Lett.*, **60** (1996) 283-287.
- [5] W. Geyer, On Tamari lattices, *Discrete Math.*, **133** (1994) 99-122.
- [6] G. Grätzer, General Lattice Theory, Second Edition, Birkhäuser (1998).
- [7] G. Kreweras, Sur les partitions noncroisées d'un cycle, Discrete Math., 1 (1972) 333-350.
- [8] J.P.S. Kung, Matchings and Radon transforms in lattices. I. Consistent lattices, Order, 2 (1985) 105-112.
- J.P.S. Kung, Matchings and Radon transforms in lattices. II. Concordant sets, Math. Proc. Camb. Phil. Soc., 101 (1987) 221-231.
- [10] G. Markowski, Primes, irreducibles and extremal lattices, Order, 9 (1992) 265-290.
- [11] J.M. Pallo, Enumerating, ranking and unranking binary trees, Computer J., 29 (1986) 171-175.
- [12] J. Pallo, On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25 (1987) 369-373.
- [13] J.M. Pallo, A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34 (1990) 113-116.
- [14] J.M. Pallo, An algorithm to compute the Möbius function of the rotation lattice of binary trees, *Theoretical Informatics and Applications*, 27 (1993) 341-348.
- [15] J.M. Pallo, R. Racca, A note on generating binary trees in A-order and B-order, Intern. J. Computer Math., 18 (1985) 27-39.
- [16] K. Reuter, Matchings for linearly indecomposable modular lattices, Discrete Math., 63 (1987) 245-247.

- [17] R. Simion, Noncrossing partitions, Discrete Math., 217 (2000) 367-409.
- [18] R. Simion, D. Ullman, On the structure of the lattice of noncrossing partitions, *Discrete Math.*, 98 (1991) 193-206.
- [19] D.D. Sleator, R.E. Tarjan, W.P. Thurston, Rotation distance, triangulations and hyperbolic geometry, J. Amer. Math. Soc., 1 (1988) 647-681.
- [20] D. Tamari, Monoïdes préordonnés et chaînes de Malcev, Bull. Soc. Math. France, 82 (1954) 53-96.
- [21] A. Walendziak, On consistent lattices, Acta Sci. Math. (Szeged), 59 (1994) 49-52.
- [22] T.R. Walsh, Generation of well-formed parenthesis strings in constant worst-case time, J. Algorithms, 29 (1998) 165-173.