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Abstract

In this note we consider a series of lattices that are enumerated by the well-known Catalan
numbers. For each of these lattices, we exhibit a matching in a constructive way.
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1 INTRODUCTION

Given a lattice L, we denote the zero (resp. unit) by O (resp. 1) if it exists. The meet and the join
of (z,y) are denoted respectively x Ay and x Vy. x € L is a join (resp. meet)-irreducible element
if t =aVb (resp. x =a Ab) implies x = a or z = b. In other words, join (resp. meet)-irreducible
elements have a unique lower (resp. upper) cover. Given a finite lattice L, let J(L) (resp. M(L))
denote the set of nonzero join-irreducible (resp. nonunit meet-irreducible) elements of L. We say that
L has a matching o if o is a map of J(L)U{0} to M (L)U{1} which is one-to-one and verifies j < o()
for each join-irreducible j [2, 8, 16]. Kung has proved that every consistent lattice has a matching [8].
In this note, we exhibit matchings for three Catalan lattices, i.e. lattices which are enumerated by the
well-known Catalan numbers. The three sets of combinatorial objects which are endowed with a lattice
structure are respectively the well-formed parentheses strings, the binary trees and the noncrossing
partitions. We adopt a constructive point of view. Indeed we build ezplicit matchings by giving precise
constructions.

For the first two lattices often used in computer science [4, 13, 22], the main idea follows [6, p. 83].
Let C be a particular maximal chain in the lattice L. Let assume that the length of C is equal to
|J(L)|. For j € J(L), let s(j) be the smallest member of C' such that j < s(j). We thereby build a
one-to-one map s of J(L) to C — {0}. For m € M(L), let t(m) be the greatest member of C' such
that t(m) < m. We thereby build a one-to-one map of M (L) to C — {1}. Using the above bijections,
a matching in L can be constructed.



2 MATCHINGS IN LATTICES OF WELL-FORMED PARENTHE-
SES STRINGS

A well-formed parentheses string (w.f.p. string in short) is a word on the alphabet {(,)} generated by
the grammar S — (5)[SS|\ where A is the empty word. We denote by P, the set of w.p.f. strings
with n open and n close parentheses. It is well-known that |P,| = ¢, where ¢, = (2; )/(n+1) is
the nth Catalan number. Let — denote the adjacent parentheses interchange, i.e. we write w — w’
(w,w’ € P,) if there exist x and y € {(,)}* such that w = z)(y and w’ = z()y. Thus we obtain w’
from w by interchanging two adjacent parentheses. Let — be the reflexive transitive closure of —.
In order to characterize —, we use the following coding introduced in [15]. Let define the P-sequence
of w € P, as the integer sequence (p,(1),... ,pw(n)) where p, (i) is the number of open parenthe-
ses written before the ith close parenthesis of w. For example, if w = (((()()))(()))() € Pg then
pw = (4,5,5,5,7,7,7,8).

An n-integer sequence p is the P-sequence of a w.f.p. string of P, iff p(n) = n and for all ¢ € [1,n—1] :
i <p(i) <p(i+1) [15]. We have shown in [4] the following characterization:

Theorem 1 For all w,w' € P, we have w = w' iff for all i € [1,n] : py(i) < pur(i) .

(P,, =) is a distributive lattice with 0 and 1 for all n, which is graded by the rank function
r(w) = > pw(i). It is well-known that every distributive lattice has a matching [2].
We have pg = (1,2,3,...,n) and p; = (n,n,n,...,n). The P-sequences of the meet and the
join of w and w’ € P, are respectively computed by puyaw (i) = min(py(i), pu (i) and pyyw (i) =
max(py (i), py (i) for all i € [1,n]. In short, we write pyaw = Min(puw, Puw) and Pyyvw = Maz (P, Pw’)-

Theorem 2 w is a non-zero join-irreductible element of P, iff there exist k € [1,n] and l € [2,n] such
that py = (1,2,... k=1L k+1l—1,... ,k+1l—-1Lk+0Lk+1+1,...,n).
l

Proof. Let w # 0 be a join-irreducible element of P,. Thus we have {i € [1,n]|p,(i) > i} # 0 since
pw # (1,2,3,...,n). Let denote iy = min{i € [1,n]|py (i) > i} and ia = max{i € [1,n]|pw (i) > i}.
Suppose that p,(i1) < pyw(iz). Let us denote i = max{j € [i1,i2[|pw(j) < Pw(iz)}. Then we obtain the
following decomposition: p,, = max(p’,p") with p’ = (p(1),... ,pw(i1) = 1,... ,pw(i2),... ,pw(n))
and p”" = (pp(1),- .. ,pw(i1), -« s Dw(),pw(i2) — 1, ..., pw(iz) — 1, pw(ia+1),... , pw(n)) which contra-
dicts the fact that w has a unique lower cover. Therefore p,,(i1) = py(iz) = i2 + 1 and we can write
pw=(1,...,i1—1,i9+1,... ;ig+1,... ,n). Theresult holds with i; = k and [ = is—i1+2. Conversely,
if the P-sequence of wis p, = (1,... ,k—1,k+1—1,... ;k+1—1,k+1,... ,n), only one w’ satisfies
r(w') = r(w) — 1. This w’ verifies p,y = (1,... k=1L, k+1—2k+1—1,... ,k+1—1,k+1,... ,n).

Theorem 3 w is a non-unit meet-irreducible element of P, iff there exist k and [ with
1<i<k<n-—1 such that py, = (k,k,... ;k,n,... n).
—_———
!

Proof. Let w # 1 be a meet-irreducible element of P,. Thus we have {i € [1,n — 1]|py,(i) <
pw(i + 1)} # 0 since py, # (n,n,...,n). Let us denote i1 = min{i € [1,n — 1]|pw(i) < pw(i + 1)}
and io = maz{i € [1,n — 1]|pw(i) < pw(@ + 1)}. In the case where iy < i2, p, could be writ-
ten as p, = min(p/,p”) with p’ = (pu(1),... ,pw(it — 1),pw(i1) + 1,... ,pw(ia),... ,pw(n)) and
P = (pw(l), ... ,pw(i1), -, Pw(ia—1),pw(i2)+1,ppu(i2+1), ... ,pw(n)), contradicting the existence of



a unique upper cover. Thus i; = i3 holds and denoting p,,(iz) = k, we have p,, = (k,... ,k,n,... ,n).
Conversely if the P-sequence of w is p, = (k,k,... ,k,n,n,... ,n), only one w’ satisfies r(w’) =
r(w) + 1. Thus w' verifies p,» = (k,... . k,k+1,n,... ,n).

Remark. The number of join-irreductibles is equal to the number of meet-irreductibles, namely
@. Furthermore, G. Gratzer [6, p. 83] shows that in a distributive lattice, any maximal chain has
length |J(L)|. The tool of this proof is using for constructing a matching of P,.

Theorem 4 The map o : J(L)U{0} — M (L) U {1} defined by:

forke[l,n]: o((1,2,--- ,k—1,n,---,n))=(k—1,--- ,k—1,n,--- ,n)

k—1

and if k+1—1<n withl € [2,n]:

o((L,2,... ;k—1k+1-1,... )k+1l—-1,k+1,...,n)=(k+1l—-1,... ,k+1l—1,n,...,n)
l i e R

18 a matching in L.

Proof. The construction method consists in choosing a maximal chain C of P,, then in constructing
a non-decreasing one-to-one map of J(L)U {0} to C and finally in constructing a non-increasing one-
to-one map of M(L)U {1} to C.
We choose a maximal chain C ={0=¢y —c; — ... — Cn(n—-1)/2 = 1} in P, in the following way. We
start with ¢y = 0 and for each w.f.p. string w of C, we apply the adjacent parentheses interchange
)(— () on the rightmost occurrence )( in w. For example in Ps: ()()()()() — O00O(0)) — OO(O() —
0000)) = 000)) = OO0 — OW)))) — (O)))) — ((O)))) — (((ON)) — ((((())))). See
also the bold path in Figure 1.
A non-unit w.f.p. string of this chain C' is characterized by a P-sequence of the form (1,2,... ,k —
L,pk,n,...,nm)withl <k<n—1land k<pp<n-—1
For j € J(L) U {0}, let s(j) be the smallest member of C such that j < s(j). Thus s(0) = 0 and
s((1,2,... k=1L k+1—1,... ,k—i—l—l,k—i—l,... ,n)) = (L2,... . k—1Lk+1l—-1n,...,n). sis
l
obviously injective and thus is a one-to-one map. For m € M(L) U {1}, let t(m) be the greatest
member of C' such that ¢(m) < m. Thus (1) =1 and if k£ # n, [ > 1 then
t((k,ky... Jk,n,...,n))=1,...,l —1,kn,...,n). tis also injective and thus is a one-to-one
———— ——

l n—I
map. t~!is defined by t71(1) = Land if k +1—1#n, t 1((1,2,... ,k—1,k+1—1,n,...,n)) =
(k+1—-1,... ,k+I1—1,n,...,n) and t1((1,2,--- ,k—1,n,---,n) = (k—1,---  k—1,n,--- ,n).

~~

k k—1
Therefore the map o = t~! o s defined previously is a matching in P,,.
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Figure 1: The distributive lattice P,

3 MATCHINGS IN TAMARI LATTICES

The so-called Tamari lattices are orderings of w.f.p. words that were introduced by Tamari fifty years
ago [20] and later shown to be lattices [1, 5, 10, 11]. The Tamari lattices can be described in many
ways via the known bijections between families of Catalan combinatorial objects [3]. A system that
is isomorphic to Tamari lattices is that of triangulations of a polygon related by the diagonal flip
operation [19]. Another system that is isomorphic to Tamari lattices too is that of binary trees related
by rotations [11, 12, 14].

A binary tree is a rooted, ordered tree in which every internal node () has exactly two sons. External
nodes or leaves have no children and are denoted O. We denote by B the set of binary trees. We
denote by Ty, and Tg the left and right subtrees of T' € B if T' # O. In Polish notation, we can write
T=_0OTLTg.

We denote by B, the set of binary trees with n internal nodes (and thus with n + 1 leaves). It is
well-known that |B,| = ¢,.

The leaves of a binary tree T' are numbered by a preorder traversal of T (i.e. from left to right). The
weight |T'| of a tree T is the number of leaves of T. Given T € B, the weight sequence of T is the
integer sequence wp = (wp(1),... ,wr(n)) where wp (i) is the weight of the largest subtree of T" whose
last leaf is i [11, 14]. Rotation is a transformation — on B,, such that a subtree QT O T2T5 of a
tree of B,, is replaced by the subtree O O 717275 where T1,T>,75 € B. We have proved in [11] the
following characterization:

Theorem 5 Given T and T’ € B, we have T — T iff wr (i) < wy (i) for all i € [1,n].



(Bn, L) is a semidistributive lattice for all n, called Tamari lattice, with 0 and 1 [1, 5, 10, 11].
Thus it is a consistent lattice [21] and therefore it has a matching [8]. We have wg = (1,1,...,1) and
wy = (1,2,3,... ,n). The weight sequence of the meet of T and 7" is easy to compute: wpags(i) =
min(wr (i), wy(i)). See [13] for computing the join. The following characterization can be shown
easily:

Theorem 6 A n-integer sequence w is the weight sequence of a tree of B,, iff for all i € [1,n]:

(i) 1 <w; <iand

(it) if j € [i —w; + 1,1] then i —w; < j — wj.
Theorem 7 T is a join-irreducible element of By, iff there exist i and k € [2,n] such that wr(i) =k
with k < i and wp(j) =1 for all j # 1.

Proof. All elements of a weight sequence of a tree T are equal to 1 except one iff there exists a
unique occurrence () of two consecutive internal nodes in the Polish notation of 7. Thus T has a
unique lower cover.

Theorem 8 T is a meet-irreducible element of By, iff there exist k,l € [1,n] such that
wr=(1,2,... ,k,1,2,... LLk+1+1,....,n).

Proof. A tree T has a unique upper cover iff there exists a unique occurrence O() of a leaf followed
by an internal node in the Polish notation of 7. If k denotes the number of this leaf, then wy (i) =4
for 1 <4 < k. This internal node is the root of a subtree 7. If | = |T}|, then wy(i) = i — k for
E+1<i:<k+1

Remark. The number of join-irreductibles is equal to the number of the meet-irreductibles [1, 10],

namely % Furthermore, B,, has a maximal chain of length |J(L)| (see [10, 13]). The previous

tool is now applied once again.
Theorem 9 The map o : J(L)U{0} — M(L) U {1} defined by :
J(O) :h(17 71) = (1a2¢"' y T — 1a1)

fori > 2:

and if 3 < k <7

o((1,1,---,1,k,1,--- 1)) =(1,2,3,--- ,i—k+1,1,2,--- [k—2,4,i+1,--- ,n)
———
i—1

s a matching in L.



Proof. First we choose a chain C' of maximal length (|J(L)|). The smallest element of C' is 0.
In order to obtain the successor of a tree T', we apply the rotation transformation on the rightmost
occurrence of J() in the Polish notation of T. For example in Bs, we obtain the maximal chain:
11111 — 11112 — 11113 — 11123 — 11124 — 11134 — 11234 — 11235 — 11245 — 11345 — 12345.
See also the bold path in Figure 2. The non-unit trees of this maximal chain can be characterized by
a weight sequence of the form:

Ck’l:(l,”‘ ,1,1,2--- L T4+2,143,--- ,n—k+1) (1)
——— e —
k l

with k > 1,1 > 1 and k+ 1 < n. Let denote ¢o,, = (1,2, - ,n) = wy.

As in the case of the previous distributive lattice, we construct a non-decreasing one-to-one map f
between J(L)U{0} and the chain C' and then a non-increasing one-to-one map g between M (L)U {1}
and this chain C. For the first bijection s, we associate to an element j of J(L) U {0} the smallest
element of the chain such that j < s(j) . This allows us to define f between J(L)U {0} and C by

F(0) = wWo = en_1.1,if2 < k <ithen f(1,1,-- , 1,1,k 1,1, 1)) = (1, , 1, 1,2, .k — 2,k k+
— ——— ——— — ———
i—1 i—k+1 k—2
L sn—i+k)=ci—py1p—2
and f((1717 7172717”' 71)) :(]—717 7172737"' ,n—i+2):Ci_27n_i+2
——— — ——
i—1 i—1

Similarly, we associate to an element of M (L) U {1} the greatest element of the chain which is
lower than it. The second non-increasing bijection g is therefore defined between M (L) U {1} and C
by:

g(1) =1landif £k > 1,1 >1 (k+1 < n) then ¢((1,2,--- ,k,1,2,--- LE+1+1,--- ,n)) =
1,552, JLI4+21+3,--- ;n—k+1)=cpy.

N—— N\ —

k l

The inverse function is therefore a non-decreasing one-to-one map and is defined by : ¢=!(1) = 1
and g~ H(eky) = (1,2, ,k—1,k,1,2,--+ I, k+1—1,--- ,n). Thus ¢ = g~ ! o f constitutes a matching

* z

in L.

4 MATCHINGS IN LATTICES OF NONCROSSING PARTITIONS

A vpartition By/Bsy/... /By of {1,2,... ,n} is called noncrossing if there do not exist four numbers
a < b < c < dsuchthat a,c € B; and b,d € B; with i # j. For example 12579/34/6/8 is a noncrossing
partition of {1,2,...,9} (ncp in short) while 13568,/2479 is crossing. We denote NC,, the set of all
ncp of {1,2,... ,n}. We have [NC,,| = ¢,,. The refinement order < is defined on NC,, in the following
manner: two ncp p and p’ satisfy p < p’ if every block of p is a subset of some block of p’. NC,
is a graded lattice under refinement with 0 and 1 [3, 7, 17, 18]. We have 0 = 1/2/3/... /n and
1 =123...n. The following characterizations can be proved easily:

Theorem 10 p is a join-irreducible element of NC,, iff p = B1/Bs/.../Bn—1 with |B1| = 2 and
|B;| =1 for2 <i<mn-—1. pis a meet-irreducible element of NC,, iff p = B1/B>.

Theorem 11 The map o : J(L) — M(L) defined by :
ofi,nt / i) ={i+1}/{5,j #i+1} foriel,n—-2

Jj¢{in}
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Figure 2: The Tamari lattice By

o({n—1,n} » /1 }{j}) ={1}/{4,j #1}
j¢{n—1mn
o({i.gy / Ak} ={ii+ 1, ik k¢ [ij]} for1 <i<j<n-—1
ke{i.j}
is a matching in NC,,.

Proof. We just need to verify the surjectivity of o. Let A = A;/As be a ncp in M(L). If there
exists @ € {1,2} such that |A;| = 1, by definition of o, A is in the range of 0. Let us suppose now that
there does not exist 7 € {1,2} such that |4;| = 1 and that n is in the block Ay. Let i = min{k € A}
and j = max{k € A;}. Thus, we obtain i < j < n. Now, according to the definition of a ncp, there
is no element ¢ in As such that ¢ < ¢ < j < n. This implies that all integers between ¢ and j are in
Aj. So, we can write Ay = {i,i+1,---,j}. Therefore, we have o({i,7} / {k})={i,i+1,---,j}/

ke¢{i,i}
{k,k ¢ [i,7]} and thus o is a bijection.
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