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Abstract

We give the first Gray code for the set of n-length permutations with a given number of cycles. In this code, each permutation is
transformed into its successor by a product with a cycle of length three, which is optimal. If we represent each permutation by its
transposition array then the obtained list still remains a Gray code and this allows us to construct a constant amortized time (CAT)
algorithm for generating these codes. Also, Gray code and generating algorithm for n-length permutations with fixed number of
left-to-right minima are discussed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Various study have been made on generating algorithms for permutations and their restrictions (with given ups and
downs [5,10], derangements [1], involutions [6], and fixed-point free involutions [16]) or their generalizations (multiset
permutations [15]). See [4,12] for surveys of permutation generation methods. At [7] is given an implementation of
Taylor and Ruskey [11] generating algorithm for n-length permutations with k cycles. However, the generating order
is neither lexicographic nor Gray code order. On the other hand, these codes also called permutation codes or arrays
have some applications for power line communication [2].

Let Sn be the set of all permutations of length n�1. We represent permutations in one-line notation, i.e. if i1, i2, . . . , in
are n distinct values in [n] = {1, 2, . . . , n}, we denote the permutation � by the sequence (i1, i2, . . . , in) if �(k) = ik
for 1�k�n. Moreover, if � = (�(1), �(2), . . . , �(n)) is an n-length permutation then the composition (or product)
� · � is the permutation (�(�(1)), �(�(2)), . . . , �(�(n))). In Sn, a k-cycle � = 〈i1, i2, . . . , ik〉 is an n-length permutation
verifying �(i1)= i2, �(i2)= i3, . . . , �(ik−1)= ik, �(ik)= i1 and �(j)= j for j ∈ [n]\{i1, . . . , ik}; and the domain of �
is the set {i1, . . . , ik}. In particular, a transposition (i.e. a 2-cycle) has domain of cardinality two. It is well known that
each n-length permutation can be uniquely decomposed in a product of cycles with disjoint domains. For 1�k�n, we
denote by Sn,k the set of all n-length permutations which admit a decomposition in a product of k (disjoint) cycles and
{Sn,k}1�k �n forms a partition for Sn. The cardinality of Sn,k is given by the signless Stirling numbers of the first kind
s(n, k) satisfying:

s(n, k) = (n − 1) · s(n − 1, k) + s(n − 1, k − 1) (1)

with the initial conditions s(n, k) = 0 if n�0 or k�0, except s(0, 0) = 1. See for instance [13,18].
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A Gray code for a sequence set S is an ordered list for S in which the Hamming distance between any two consecutive
sequences in the list (the number of positions in which they differ) is bounded by a constant, independent on the size
of the sequences. If this constant is minimal then the code is called optimal. A Gray code is cyclic if the Hamming
distance between the first and the last sequence is also bounded by this constant.

Now we introduce some notations concerning lists.
If S is a list then S is the list obtained by reversing S, and first(S) (last(S), respectively) is the first (last

respectively) element of the list, and obviously first(S) = last(S) and first(S) = last(S); S(i) is the list S if i is
even, and S if i is odd; if S1 and S2 are two lists, then S1 ◦S2 is their concatenation, and generally ©m

i=1Si is the
list S1 ◦ S2 ◦ · · · ◦ Sm. Similarly, ©1

i=mSi is the list Sm ◦ Sm−1 ◦ · · · ◦ S1.
In the following, Sn,k will denote our Gray code for the set Sn,k , fn,k = first(Sn,k) and �n,k = last(Sn,k).
Remark that if � ∈ Sn has k cycles in its (unique) decomposition in cycles with pairwise disjoint domains, and

� = 〈i, j〉, i �= j a transposition in Sn, then the permutation � · � has k − 1 or k + 1 cycles in its decomposition. Indeed,
if i and j belong to the domain of the same cycle in � then this cycle is splited into two cycles in � · �; otherwise two
cycles of � merge into a single cycle in � · �. This shows that there does not exist a Gray code for Sn,k such that two
successive permutations differ in less than three positions.

In this paper, we give the first Gray code for the set Sn,k . In this code successive permutations differ in three positions
(or equivalently, by a product with a three-length cycle) and so, by the remark above it is optimal. By representing each
permutation by its transposition array we provide an other Gray code which allows us to construct a constant amortized
time (CAT) algorithm for generating these codes. Actually, this second Gray code lists n-length permutations with
exactly k left-to-right minima in inversion array representation.

2. Preliminaries

In this section we show how Sn,k can be recursively constructed from Sn−1,k and Sn−1,k−1 which also gives a
constructive proof of the counting relation (1). We also give three lemmas, crucial in our construction of the code.

Let � ∈ Sn−1,k be an (n− 1)-length permutation with k cycles, n�2, n− 1�k�1; let also i be an integer, 1� i < n.
If we denote by � the permutation in Sn obtained from � by replacing the entry in position i by n and appending this
entry in the nth position, then � is an n-length permutation with k cycles.

Similarly, if � ∈ Sn−1,k−1 is an (n − 1)-length permutation with (k − 1) cycles, n�k�2, and if � denotes the
permutation in Sn obtained from � by appending n in the nth position, then � is an n-length permutation with k cycles.
Moreover, each permutation in Sn,k , n�2, can uniquely be obtained by one of these two constructions.

For n, k�1, let S′
n,k be the set of n-length permutations with k cycles where n is a fixed point (i.e. �(n) = n) and

S′′
n,k = Sn,k\S′

n,k is its complement. The next definition formalizes the two constructions above.
Then the functions �n and �n defined below induce a bijection between Sn−1,k−1 and S′

n,k on one hand and between
[n − 1] × Sn−1,k and S′′

n,k on the other.

Definition 1.

(1) For 1�k < n, an integer i ∈ [n−1] and a permutation � ∈ Sn−1,k , we define an n-length permutation �=�n(i, �)
by

�(j) =
{�(i) if j = n,

n if j = i,

�(j) otherwise.

(2) For n�k�2 and a permutation � ∈ Sn−1,k−1, we define an n-length permutation � = �n(�) by

�(j) =
{

n if j = n,

�(j) otherwise.

Remark that with i and � as above, it is easy to see that

• if � ∈ Sn−1,k , �n(i, �) ∈ S′′
n,k and �n : [n − 1] × Sn−1,k → S′′

n,k is a bijection;
and

• if � ∈ Sn−1,k−1, �n(�) ∈ S′
n,k and �n : Sn−1,k−1 → S′

n,k is a bijection.
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So, the cardinality of Sn,k is given by s(n, k) = card(S′
n,k) + card(S′′

n,k) = s(n − 1, k − 1) + (n − 1) · s(n − 1, k) which
is a combinatorial proof of (1).

In the following, we will omit the subscript n for the functions �n and �n, and it should be clear from context. Also,
we extend the functions � and � in a natural way to sets and lists of permutations. Moreover for i ∈ [n − 1] and S a
list of (n − 1)-length permutations we have �(i,S) = �(i,S), �(i, first(S)) = first(�(i,S)), and �(i, last(S)) =
last(�(i,S)). If we do not consider the parameter i, we obtain similar results for the function �.

Now, we give some elementaries results which are crucial in the construction of our Gray code.

Lemma 2. Let � be an (n − 1)-length permutation, if n�3 and 1� i, j �n − 1, i �= j then �(i, �) = �(j, �) · 〈i, j, n〉.
Proof. For each (n − 1)-length permutation � = (�1, �2, . . . , �n−1), we have �(j, �) = (�1, . . . , �j−1, n, �j+1, . . . ,

�n−1, �j ). Thus, we obtain

�(j, �) · 〈i, j, n〉 = (�1, . . . , �i−1, n, �i+1, . . . , �n−1, �i )

= �(i, �). �

Lemma 3. Let � and � be two (n − 1)-length permutations satisfying � = � · 〈i, j, k〉 with i, j, k pairwise different,
1� i, j, k�n − 1, n�3 then �(j, �) = �(k, �) · 〈i, j, k〉.
Proof.

�(j, �) = �(j, � · 〈i, j, k〉)
= �(j, (�1, . . . , �i−1, �j , �i+1, . . . �j−1, �k, �j+1, . . . , �k−1, �i , �k+1, . . . , �n−1))

= (�1, . . . , �i−1, �j , �i+1, . . . �j−1, n, �j+1, . . . , �k−1, �i , �k+1, . . . , �n−1, �k)

and

�(j, �) · 〈i, k, j〉 = (�1, . . . , �i−1, �i , �i+1, . . . �j−1, �j , �j+1, . . . , �k−1, n, �k+1, . . . , �n−1, �k)

= �(k, �). �

Lemma 4. Let � be an (n − 1)-length permutation and � = � · 〈i, j〉 with i �= j , 1� i, j �n − 1, n�3 then �(i, �) =
�(�) · 〈i, n, j〉.
Proof.

�(i, �) = �(i, � · 〈i, j〉)
= �(i, (�1, . . . , �i−1, �j , �i+1, . . . , �j−1, �i , �j+1, . . . , �n−1))

= (�1, . . . , �i−1, n, �i+1, . . . , �j−1, �i , �j+1, . . . , �n−1, �j )

and

�(i, �) · 〈i, j, n〉 = (�1, . . . , �i−1, �i , �i+1, . . . , �j−1, �j , �j+1, . . . , �n−1, n)

= �(�). �

3. The gray code

From the remark following Definition 1 results that the set Sn,k can be written as:

Sn,k =
n−1⋃
i=1

�(i, Sn−1,k) ∪ �(Sn−1,k−1) (2)

with �(Sn,0) and �(i, Sn,n+1) empty.
If S is a list of permutations where any two consecutive permutations differ in three positions then so is the image

of S by � or �. Therefore, it is natural to look for a Gray code for the set Sn,k of the form

S1 ◦ S2 ◦ · · · ◦ S� ◦ T ◦ S�+1 ◦ · · · ◦ Sn−1, (3)
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(ii)

n=1

n=2

n=3

k=1 k=3k=2

(iv)

(v)

(i) (iii)

Fig. 1. The five cases for our Gray code.

where

• T is the list �(Sn−1,k−1) or its reverse, and
• Si is �(j,Sn−1,k) or its reverse, for some j.

Notice that (3) is the ordered counterpart of (2).
Primarily, there are three difficulties to construct such a Gray code:

• for each Si , as in the last point above, we must determine a j �n − 1 to apply � to Sn−1,k ,
• decide for each list if it is reversed or not,
• find the place where T must be inserted.

In the next we construct a Gray code of the form given by (3) according to the following cases (see Fig. 1):

(i) k = 1�n,
(ii) 2�k = n,

(iii) 2�k = n − 1,
(iv) 2�k = n − 2,
(v) other cases,

and computer tests enable us to think that there is not simpler expression of such a Gray code.
For each case above, we give a recursive definition for Sn,k , an ordered list for the set Sn,k and we provide its first

fn,k and last element �n,k . Sn,k is the concatenation of n lists as in (3) and we prove that it is a Gray code by showing
that there is a ‘smooth’ transition between successive sublists, that is, the last permutation of a sublist and the first one
of the next sublist differ by a product with a three-length cycle. Recall that, by the remark in introduction, the Gray
code will be optimal.

3.1. The case k = 1, n�1

For n�1 we define,

Sn,1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1) if n = 1,

(2, 1) if n = 2,

(3, 1, 2), (2, 3, 1) if n = 3,

�(1,S3,1) ◦ �(2,S3,1) ◦ �(3,S3,1) if n = 4,

�(1,Sn−1,1) ◦ 4©
i=n−1

�(i,Sn−1,1)
(i+1) ◦ �(2,Sn−1,1) ◦ �(3,Sn−1,1) if n�5.

(a)

Remark that the function � does not appear in relation (a).
The lemma below gives the first and the last permutation of the list Sn,1.

Please cite this article as: Jean-Luc Baril, Gray code for permutations with a fixed number of cycles, Discrete Mathematics (2006), doi:
10.1016/j.disc.2006.09.007

http://dx.doi.org/10.1016/j.disc.2006.09.007


ARTICLE IN PRESS
J.-L. Baril / Discrete Mathematics ( ) – 5

Lemma 5. If n�4 then

(1) fn,1 = (n, 1, 2, 3, . . . , n − 2, n − 1),
(2) �n,1 = (n − 1, 1, n, 3, . . . , n − 2, 2).

Proof.

(1) S2,1 is the list (2, 1) and more generally relation (a) gives fn,1 = �(1, fn−1,1), for n�3. The recurrence on n
completes the proof.

(2) Similarly, we have for n�4, �n,1 = last(�(3,Sn−1,1)) = �(3, fn−1,1) = (n − 1, 1, n, 3, . . . , n − 2, 2). �

Proposition 6. The list Sn,1 defined by (a), n�1, is a Gray code.

Proof. By Lemma 2, we have for n�3 and i �= j :

last(�(i,Sn−1,1)) = �(i, last(Sn−1,1))

= �(j, last(Sn−1,1)) · 〈i, j, n〉
= last(�(j,Sn−1,1)) · 〈i, j, n〉
= first(�(j,Sn−1,1)) · 〈i, j, n〉.

Similarly, last(�(i,Sn−1,1)) = first(�(j,Sn−1,1)) · 〈i, j, n〉.
By Lemma 3,

last(�(1,Sn−1,1)) = �(1, last(Sn−1,1))

= �(1, (n − 2, 1, n − 1, 3, . . . , n − 3, 2))

= �(1, first(Sn−1,1) · 〈1, n − 1, 3〉)
= first(�(n − 1,Sn−1,1)) · 〈1, n − 1, 3〉.

Notice that the transition between �(1,Sn−1,1) and �(n − 1,Sn−1,1) is given in the first point of the proof by setting
i = 1 and j = n − 1. �

3.2. The case k = n, n�2

Obviously,Sn,n is the single element list (1, 2, . . . , n − 1, n) for n�2, (b)

and in this case, there is nothing to do.

3.3. The case k = n − 1, n�3

For n�3 we define

Sn,n−1

=

⎧⎪⎨
⎪⎩

�(1,S2,2) ◦ �(2,S2,2) ◦ �(S2,1) if n = 3,

�(1,Sn−1,n−1) ◦ 2©
i=n−1
i �=n−2

�(i,Sn−1,n−1) ◦ �(n − 2,Sn−1,n−1) ◦ �(Sn−1,n−2) otherwise. (c)

Lemma 7. If n�3 then

(1) fn,n−1 = (n, 2, 3, . . . , n − 2, n − 1, 1),
(2) �n,n−1 = (n − 1, 2, 3, . . . , n − 2, 1, n).
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Proof.

(1) By relation (c), S3,2 is the list (3, 2, 1), (1, 3, 2), (2, 1, 3) and more generally fn,n−1 = first(�(1,Sn−1,n−1)).
So, we obtain fn,n−1 = �(1, fn−1,n−1) = (n, 2, 3, . . . , n − 2, n − 1, 1) with a recurrence on n.

(2) Similarly, �n,n−1 = last(�(Sn−1,n−2)) = �(fn−1,n−2) = (n − 1, 2, 3, . . . , n − 2, 1, n). �

Proposition 8. The list Sn,n−1 defined by (c), n�3, is a Gray code.

Proof. By Lemma 2, and since �(i,Sn−1,n−1) has only one element, the transition between �(i,Sn−1,n−1) and
�(j,Sn−1,n−1), 1� i, j �n − 1 is a product with a three-length cycle. So, it remains to verify that last(�(n −
2,Sn−1,n−1)) differs from first(�(Sn−1,n−2)) by a three-cycle:

last(�(n − 2,Sn−1,n−1)) = �(n − 2, (1, 2, 3, . . . , n − 1))

= �(n − 2, (n − 2, 2, 3, . . . , n − 3, 1, n − 1) · 〈1, n − 2〉),
and by Lemma 4,

last(�(n − 2,Sn−1,n−1)) = �((n − 2, 2, 3, . . . , n − 3, 1, n − 1)) · 〈1, n, n − 2〉
= �(first(Sn−1,n−2)) · 〈1, n, n − 2〉
= first(�(Sn−1,n−2)) · 〈1, n, n − 2〉. �

3.4. The case k = n − 2, n�4

In this case we define for n�4,

Sn,n−2 = �(1,Sn−1,n−2) ◦ n−1©
i=3

�(i,Sn−1,n−2)
(i) ◦ �(Sn−1,n−3) ◦ �(2,Sn−1,n−2). (d)

Lemma 9. If n�4 then

(1) fn,n−2 = (n, 2, 3, . . . , n − 2, 1, n − 1),
(2) �n,n−2 = (n − 1, n, 3, 4, . . . , n − 2, 1, 2).

Proof.

(1) By relation (d), S4,2 is the list (4, 2, 1, 3), (4, 3, 2, 1), (4, 1, 3, 2), (2, 1, 4, 3), (1, 3, 4, 2), (3, 2, 4, 1), (3, 1, 2, 4),

(2, 3, 1, 4), (2, 4, 3, 1), (1, 4, 2, 3), (3, 4, 1, 2) and more generally fn,n−2 = first(�(1,Sn−1,n−2)). So, fn,n−2 =
�(1, fn−1,n−2) and the recurrence on n completes the proof.

(2) Similarly,

�n,n−2 = last(�(2,Sn−1,n−2))

= �(2, fn−1,n−2)

= (n − 1, n, 3, . . . , n − 2, 1, 2). �

Proposition 10. The list Sn,n−2 defined by (d), n�4, is a Gray code.

Proof. By Lemma 2, the transition between �(i,Sn−1,n−2) and �(j,Sn−1,n−2), 1� i, j �n − 1, (or respectively
between �(j,Sn−1,n−2) and �(i,Sn−1,n−2)) is a product by a three-length cycle. It remains to examine the transitions
between �(n − 1,Sn−1,n−2)

(n−1) and �(Sn−1,n−3), and between �(Sn−1,n−3) and �(2,Sn−1,n−2)

last(�(n − 1,Sn−1,n−2)
(n−1)) =

{
(n − 1, 2, 3, . . . , n − 3, n − 2, n, 1) if n even,

(n − 2, 2, 3, . . . , n − 3, 1, n, n − 1) if n odd
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and

first(�(Sn−1,n−3)) = (n − 1, 2, 3, . . . , n − 3, 1, n − 2, n)

=
{

last(�(n − 1,Sn−1,n−2)
n−1) · 〈n − 2, n − 1, n〉 if n even,

last(�(n − 1,Sn−1,n−2)
n−1) · 〈1, n − 1, n〉 if n odd.

Moreover,

last(�(Sn−1,n−3)) = (n − 2, n − 1, 3, 4, . . . , n − 3, 1, 2, n)

= (n − 2, n, 3, 4, . . . , n − 3, 1, n − 1, 2) · 〈2, n − 1, n〉
= �(2, last(Sn−1,n−2)) · 〈2, n − 1, n〉
= first(�(2,Sn−1,n−2)) · 〈2, n − 1, n〉. �

3.5. The case 2�k�n − 3

If 2�k�n − 3, we define

Sn,k = �(1,Sn−1,k) ◦ k+1©
i=n−1

�(i,Sn−1,k)
(i) ◦ �(Sn−1,k−1)

(k) ◦ 2©
i=k

�(i,Sn−1,k)
(i−1). (e)

Lemma 11. If 2�k�n − 3 then

(1) fn,k = (n, 2, 3, . . . , k, 1, k + 1, k + 2, . . . , n − 1)

(2) �n,k =
{

(n − 1, n, 3, . . . , k, 1, k + 1, k + 2, . . . , n − 2, 2) if k �= 2,

(n − 1, n, 1, 3, . . . , n − 2, 2) otherwise.

Proof. By recurrence on n, we havefn,k=first(�(1,Sn−1,k))=�(1, fn−1,k) anchored byfk+2,k=(k+2, 2, 3, . . . , k, 1, k+
1). Similarly, �n,k = last(�(2,Sn−1,k)) = �(2, fn−1,k) also anchored by fk+2,k = (k + 2, 2, 3, . . . , k, 1, k + 1). �

Proposition 12. The list Sn,k defined by (e), 2�k�n − 3 is a Gray code.

Proof. We use Lemma 2 for the transitions from �(i, Sn−1,k) to �(j, Sn−1,k) and from �(j, Sn−1,k) to �(i, Sn−1,k).
It remains to examine the three transitions (i) �(1, Sn−1,k) and �(n − 1, Sn−1,k); (ii) �(k + 1,Sn−1,k)

(k+1) and
�(Sn−1,k−1)

(k); (iii) �(Sn−1,k−1)
(k) and �(k,Sn−1,k)

(k−1).
Case (i): If k �= 2,

last(�(1,Sn−1,k)) = �(1, last(Sn−1,k))

= �(1, (n − 2, n − 1, 3, . . . , k, 1, k + 1, . . . , n − 3, 2))

= �(1, (n − 1, 2, 3, . . . , k, 1, k + 1, . . . , n − 3, n − 2) · 〈1, n − 1, 2〉).
By Lemma 3,

last(�(1,Sn−1,k)) = �(n − 1, (n − 1, 2, 3, . . . , k, 1, k + 1, . . . , n − 3, n − 2)) · 〈2, n − 1, 1〉
= (n − 1, 2, 3, . . . , k, 1, k + 1, . . . , n − 3, n, n − 2) · 〈2, n − 1, 1〉
= �(n − 1, first(Sn−1,k)) · 〈2, n − 1, 1〉.

The case k = 2 is similar.
Case (ii): Let � = first(Sn−1,k) (resp. last(Sn−1,k)) and � = first(Sn−1,k−1) (resp. last(Sn−1,k−1)). We have

� = � · 〈k, k + 1〉. By Lemma 4,

�(k + 1, �) = �(k + 1, � · 〈k, k + 1〉)
= �(�) · 〈k + 1, n, k〉.

Case (iii): The proof is similar as for the case (ii). �
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Table 1
The lists S3,k , 1�k�3, and S4,k for 1�k�4

S3,1 S3,2 S3,3 S4,1 S4,2 S4,3 S4,4

1 312 1 321 1 123 1 4123 1 4213 1 4231 1 1234
2 231 2 132 2 4312 2 4321 2 1243

3 213 3 2413 3 4132 3 1432
4 3421 4 2143 4 2134
5 2341 5 1342 5 1324
6 3142 6 3241 6 3214

7 3124
8 2314
9 2431

10 1423
11 3412

For instance, in S4,2 the sublists of relation (d), �(1,S3,2), �(3,S3,2), �(S3,1) and �(2,S3,2), are alternatively in bold-face and italic.

Note that our Gray code Sn,k is cyclic and optimal for all n, k. See Table 1 for some examples.

Definition 13. For a list of permutations L let denote L−1 the list obtained from L by replacing each permutation
in L by its group theoretical inverse.

By a simple calculation we have:

Theorem 14. The list S−1
n,k is also an optimal cyclic Gray code for n-length permutations with k cycles; i.e. two

successive permutations differ by a product with a three-cycle.

4. Transposition array representation

Here we show that replacing each permutation in the list Sn,k by its transposition array (defined below) the obtained
list still remains an optimal Gray code. Its interest is twofold. First, the recursive definition of Sn,k and the resulting
generating algorithm in the next section express subsequently permutations in transposition array representation. Sec-
ondly, this shows how a map, which generally does not preserve closeness, transforms a Gray code into another one.
See for instance [3] for more about closeness preserving bijections.

Any permutation � ∈ Sn has a unique decomposition as a product of transpositions

� = 〈p1, 1〉 · 〈p2, 2〉 · 〈p3, 3〉 · . . . · 〈pn, n〉 =
n∏

i=1

〈pi, i〉 (4)

with 1�pi � i and obviously any such decomposition provides a permutation. So (4) yields a bijection Sn −→ Tn

with Tn the product set [1] × [2] × · · · × [n], and a string p1p2p3 . . . pn ∈ Tn is yet another way to represent a
permutation called transposition array. Alternatively, a string p1p2p3 . . . pn ∈ Tn can be viewed as the inversion table
of a permutation � ∈ Sn: pi is the number of entries �j > �i , j < i, plus 1.

The relation between the two permutations, one obtained by regarding a given string in Tn as its transposition array
and the other as its inversion table, has never been studied and this might be an interesting direction of research.

Let now Tn,k be the set of strings in Tn with exactly k fixed points, that is, k entries pi with pi = i. Since the
number of ‘identity transpositions’ 〈i, i〉 in (4) equals the number of cycles in �, Tn,k is the set of transposition arrays
of permutations in Sn,k and relation (4) induces a bijection Sn,k −→ Tn,k .

On the other hand, Tn,k is the set of inversion tables of permutations in Sn having k left-to-right minima; a left-to-right
minimum in a permutation is an entry less than all the entries to its left. As a consequence, we obtain the following
enumerative result: the number of permutations in Sn with k left-to-right minima is the signless Stirling number s(n, k).
See also [13].
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Table 2
The lists S4,2 and T4,2

S4,2 T4,2

4213 1211
4321 1221
4132 1131
2143 1133
1342 1223
3241 1213
3124 1114
2314 1124
2431 1132
1423 1222
3412 1212

Each string in T4,2 is the transposition array of the corresponding permutation in S4,2.

Generally, a bijection between two sets can magnify small changes between objects and this is the case with the
bijection Sn −→ Tn defined in (4). For example, if � and �′ are two permutations such that �′ = � · 〈a, b, c〉 then the
decomposition of �′ differ from � by possibly many transpositions: take �= (7, 1, 2, 3, 4, 5, 6)=〈1, 1〉 · 〈1, 2〉 · 〈1, 3〉 ·
〈1, 4〉 · 〈1, 5〉 · 〈1, 6〉 · 〈1, 7〉 and �′ = (2, 1, 4, 3, 7, 5, 6)=� · 〈1, 3, 5〉=〈1, 1〉 · 〈1, 2〉 · 〈3, 3〉 · 〈3, 4〉 · 〈5, 5〉 · 〈5, 6〉 · 〈5, 7〉.
Conversely, if two decompositions differ by at most two transpositions, then the corresponding one-line permutations
can possibly differ by many entries: consider � = (2, 3, 4, 5, 6, 1) = 〈1, 1〉 · 〈1, 2〉 · 〈2, 3〉 · 〈3, 4〉 · 〈4, 5〉 · 〈5, 6〉 and
�′ = (2, 4, 1, 6, 3, 5) = 〈1, 1〉 · 〈1, 2〉 · 〈2, 3〉 · 〈2, 4〉 · 〈4, 5〉 · 〈4, 6〉.

Let now Tn,k be the list for the set Tn,k obtained by replacing each permutation in the list Sn,k by its transposition
array. Surprisingly, in Tn,k two consecutive sequences differ in at most two positions and so it is a Gray code (see
Table 2). This result is shown in the next theorem and despite its very similarity with Theorem 14 they are not a simple
consequence each other.

Definition 15. With the notations above, the permutation

� =
n∏

i=n−j+1

〈pi, i〉

in Sn is called the jth characteristic of �. The nth characteristic of an n-length permutation is the permutation itself, and
it is convenient to consider that the 0th characteristic of any permutation is the identity.

Remark 16. Let � be the jth characteristic of � as above.

(1) The number of cycles in � is (n − �), where � is the number of pi , n − j + 1� i�n, with pi < i,
(2) If � and � have the same number of cycles then � = �.

Remark 17. For � and �, the following are equivalent:

(1) � and � have the same jth characteristic,
(2) � and � have the same ith characteristic for i from 0 to j,
(3) � and � have the entries from n − j + 1 to n in the same respective positions,
(4) �−1 and �−1 have the same entries for each position from n − j + 1 to n.

Now let consider the transformations � and � in Definition 1. If � is a permutation in Sn−1 and �=�(i, �) ∈ Sn then
the first characteristic of � is 〈i, n〉; and if � = �(�) ∈ Sn then the first characteristic of � is the identity (actually, the
‘transposition’ 〈n, n〉). Similar results hold if we replace � and � by sets (or lists) of permutations. Generally, if A is a
list of permutations in Sn−j and

B = �1(�2(. . . �j (A) . . .)) ∈ Sn

Please cite this article as: Jean-Luc Baril, Gray code for permutations with a fixed number of cycles, Discrete Mathematics (2006), doi:
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with �i (·) of the form �(·) or �(xi, ·) then each permutation in B has the jth characteristic

n∏
i=n−j+1

〈pi, i〉,

where pi = xn−i+1 if �i (·) = �(pi, ·), and xi = i if �i (·) = �(·).
By recursivity of relations (a)–(e) we have:

Remark 18. For any � ∈ Sn,k , all permutations with the same jth characteristic as �, 0�j �n, form a contiguous
sublist of the list Sn,k defined by the appropriate relation (a)–(e). Actually, j is the depth of recursivity involved to
reach this sublist.

Theorem 19. The list Tn,k is a cyclic Gray code for n-length permutations with k cycles; i.e. two successive permu-
tations differ by one or two transpositions in their decompositions.

Proof. Let � and � be two successive permutations in Sn,k . We will show that their transposition arrays differ in at
most two positions. � and � belong to the same sublist ofSn,k as in relation (3) iff they have the same first characteristic.
By induction, it is enough to show that for two successive sublists �(A) and �(B) in the definition of Sn,k (with �,
� as �(·) or �(i, ·)) the transposition arrays of last(A) and first(B) differ in at most one position. Indeed, we give
below the transposition array representations of the first element fn,k and the last element �n,k of the list Sn,k and with
relations (a)–(e) we can verify that last(A) and first(B) differ in at most one position

fn,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 1 . . . 1 if k = 1,

1 2 . . . (n − 1)n if k = n,

1 2 . . . (n − 1)1 if k = n − 1,

1 2 . . . (n − 2)11 if k = n − 2,

1 2 . . . k11 . . . 1 otherwise,

�n,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

11 . . . 13 if k = 1,

12 . . . (n − 1)n if k = n,

12 . . . (n − 2)1n if k = n − 1,

12 . . . (n − 2)12 if k = n − 2,

12 . . . k11 . . . 12 otherwise. �

Remark 20.

• Tn,k is at the same time a Gray code for the set of n-length permutations with k cycles in transposition array
representation, and for the set of n-length permutations with k left-to-right minima in inversion table represen-
tation.

• Tn,k is suffix partitioned and satisfies Walsh’s desiderata, so looplessly implementable [17] .

5. Algorithmic considerations

In this part, we explain how the recursive definitions (a)–(e) can be implemented into an efficient algorithm, i.e. in
a CAT algorithm. Such algorithms already exist for derangements or involutions [1,9,10], so we will just give here the
main difficulties to implement our one.

Before the main call of procedure gen_up(n,k) given in Appendix, � is initialized by the identity, so it has n cycles
and is the 0th characteristic of the permutations in Sn,k . Before each recursive call of gen_up(n, k) or gen_down(n, k),
� is, for some j, the jth characteristic of a sublist of permutations in Sn,k .

(1) If � has k cycles, then � is printed, and no recursive call is produced. This corresponds to point 2 of Remark 16 and
to the recursive definition (b).
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(m,k)=(4,1)

3241

<1,4> <2,4> <3,4>

<1,3> <2,3> <2,3> <1,3> <2,3> <1,3>

<1,2> <1,2> <1,2> <1,2> <1,2> <1,2>

4231

p=1234

1432 1243

314223413421241343124123

4213 4321 1423 3412 1342

Fig. 2. The generating tree for the list S4,1 with the decomposition in a product of transpositions of each element. The list S4,1 appears in bold.

(2) If � has (k + (n − j)) cycles then (n − j − 1) calls are produced and before each of them � is updated as
� := 〈i, n− j〉 · �, with i = 1, 2, . . . , n− j − 1 (not necessarily in this order). Each � updated like that is a (j + 1)th
characteristic obtained by a premultiplication by a (not dummy) transposition of the previous jth characteristic.
The number of cycles in � decreases by one. This corresponds to the recursive definition (a) which gives the order
of calls.

(3) Similarly, if the number of cycles in � is more than k but less than (k + (n − j)), then (n − j) calls are produced,
(n − j − 1) of them are those of the point above. Before the additional call, �, the new (j + 1)th characteristic
is unchanged (� is ‘updated’ as � := 〈n − j, n − j〉 · �). This corresponds to the recursive definitions (c)–(e), and
again they give the order of calls.

In our algorithm j is the depth of the recursive call and the order of successive calls directly produced by a given call
is determined by the appropriate definition (a), (c) and (d). See Fig. 2 for the generating tree of S4,1.

This algorithm enable us to ensure that this transforms an object into its successor in CAT. Indeed, excepted for the
calls where n = 2, k = 1, all calls have a degree 0 or at least 2 (see Fig. 2 for an example). Between two recursive
calls, we execute two transpositions, and moreover at least one permutation is generated in each recursive call. This
means that the total amount of computation divided by the number of objects is bounded by a constant (see [14]). Thus
the complexity of this algorithm is O(sn,k). A Java implementation of our algorithm is available from the author on
request.

6. Uncited reference

[8].
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Appendix A.

The call of gen_up(n,k) generates the listSn,k . In order to produceSn,k we consider also the procedure gen_down(n,k)
which has the same instructions of gen_up(n,k) in the inverse order. The notation gen_up/down(n − 1, k) means that
we use gen_up(n,k) or gen_down(n,k) according to the sense of each sublist in relations (a)–(e). To multiplicate (on the
left) a jth characteristic � by a transposition 〈x, n〉, we conserve the inverse �−1 at each level of the recursivity, and we
calculate the product � · 〈�−1(x), �−1(n)〉, i.e we just need to exchange the positions �−1(x) and �−1(n) = n in �.
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procedure gen_up(n, k)

var i,j;
begin
if n = k

then print(�);
else if n = 4 and k = 1

then � := 〈1, n〉 · �; gen_up(n − 1, k); � := 〈1, n〉 · �;
� := 〈2, n〉 · �; gen_down(n − 1, k); � := 〈2, n〉 · �;
� := 〈3, n〉 · �; gen_down(n − 1, k); � := 〈3, n〉 · �;

else
if k = n − 1
then � := 〈1, n〉 · �; gen_up(n − 1, k); � := 〈1, n〉 · �;

if n − 1 > 1 then
� := 〈n − 1, n〉 · �; gen_up(n − 1, k); � := 〈n − 1, n〉 · �;

endif
for j = n − 3 downto 2 do

� := 〈j, n〉 · �; gen_up/down(n − 1, k); � := 〈j, n〉 · �;
enddo
if n − 2 > 1 then

� := 〈n − 2, n〉 · �; gen_up(n − 1, k); � := 〈n − 2, n〉 · �;
endif
if k�2 then

� := 〈n, n〉 · �; gen_down(n − 1, k − 1);
endif

else
if k = n − 2
then � := 〈1, n〉 · �; gen_up(n − 1, k); � := 〈1, n〉 · �;

for j = 3 to n − 1 do
� := 〈j, n〉 · �; gen_up/down(n − 1, k); � := 〈j, n〉 · �;

endo
if k�2 then

� := 〈n, n〉 · �; gen_up(n − 1, k − 1);
� := 〈2, n〉 · �; gen_down(n − 1, k); � := 〈2, n〉 · �;
endif

else
if k = 1
then � := 〈1, n〉 · �; gen_up(n − 1, k); � := 〈1, n〉 · �;

for j = n − 1 downto 4 do
� := 〈j, n〉 · �;gen_up/down(n − 1, k); � := 〈j, n〉 · �;

endo
� := 〈2, n〉 · �; gen_up(n − 1, k); � := 〈2, n〉 · �;
� := 〈3, n〉 · �; gen_down(n − 1, k); � := 〈3, n〉 · �;

else
� := 〈1, n〉 · �; gen_up(n − 1, k); � := 〈1, n〉 · �;
for j = n − 1 downto k + 1 do

� := 〈j, n〉 · �; gen_up/down(n − 1, k); � := 〈j, n〉 · �;
endo
if k�2 then � := 〈n, n〉 · �; gen_up/down(n − 1, k − 1); endif
for j = k downto 2 do

� := 〈j, n〉 · �; gen_up/down(n − 1, k); � := 〈j, n〉 · �;
endo

endif
endif

endif
endif

end
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