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Abstract. We focus on a family of subsets (Fp
n)p≥2 of Dyck paths of semilength n that

avoid the patterns DUU and Dp+1, which are enumerated by the generalized Fibonacci
numbers. We endow them with the partial order relation induced by the well-known Stanley
lattice, and we prove that all these posets are sublattices of the Stanley lattice. We provide
generating functions for the numbers of linear and boolean intervals and we deduce the
Möbius function for every p ≥ 2. We count meet-irreducible elements in Fp

n which establishes
a surprising link with the edges of the (n, p)-Turán graph. We also prove that intervals are
in one-to-one correspondence with bicolored Motzkin paths avoiding some patterns, which
allows to enumerate intervals for p = 2. Using a discrete continuity argument (p → ∞),
we present a similar enumerative study in a poset of some Dyck paths of semilength n
counted by 2n−1. Finally, we give bijections that transport the lattice structure on other
combinatorial objects, proving that those lattices can be seen as the well-known dominance
order on some compositions.

1. Introduction and notation

The Fibonacci sequence, defined by the recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 2,
with initial conditions F0 = F1 = 1, is one of the most fascinating integer sequences in
mathematics. It is probably due to its elegant properties and its appearance in various
natural phenomena in different domains as biology, computer science, finance, architecture
(see for instance [24, 25]). This classical sequence lays the groundwork for a broader class of
sequences: the p-generalized Fibonacci sequences defined for every p ≥ 2 by

F p
n = F p

n−1 + F p
n−2 + · · ·+ F p

n−p

with initial conditions F p
i = 0 for i < 0, and F p

0 = 1 (see [28]). These sequences are fre-
quently found in the literature. In number theory, numerous studies introduce new formulas
and properties for these numbers, while combinatorial research uncovers new classes of com-
binatorial objects counted by these numbers and, at times, develops efficient algorithms for
their complete generation. For instance, binary words of length n avoiding the pattern 1p

(for a given p ≥ 2) are counted by the p-generalized Fibonacci number F p
n+1, and their

exhaustive generation can be obtained in Gray code order with a constant amortized time
algorithm [10]. However, there is a bit less work studying a partial order on a combinatorial
class counted by Fn. For instance, Stanley proved in [32] that the Young-Fibonacci poset
Z(r) (also called Fibonacci r-differential poset) and the r-Fibonacci poset Fib(r) are two
lattices [26, 27, 31, 32, 34]. To our knowledge, there is no work that study partial order on a
family of combinatorial classes C(p), p ≥ 0, where the elements of size n in C(p) are counted
by the generalized Fibonacci numbers F p

n . This is one of the key aims of this study.
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A Dyck path of semilength n, n ≥ 0, is a lattice path in the first quarter plane starting
at the origin (0, 0), ending at (2n, 0), and never going below the x-axis, consisting of up
steps U = (1, 1) and down steps D = (1,−1). We write ϵ the empty path, that is the only
path with semilength 0. Let D be the set of all Dyck paths, and Dn be the set of those of
semilength n. For instance, we have

D3 = {UUUDDD,UUDDUD,UUDUDD,UDUDUD,UDUUDD}.
A pattern in a Dyck path P consists of consecutive steps of P . For instance a peak UD is a
pattern that always appears in a nonempty Dyck path, while a valley DU does not occur in
UnDn, n ≥ 0. More generally, we will say that a Dyck path P avoids a pattern α when P
does not contain the factor α. Let P be a Dyck path, we define type(P ) as the length of the
last descent run of P . For instance, we have type(UDUUDD) = 2 since the last descent
run is DD.

There exist several partial ordering relations on Dyck paths which endows them with
lattice structures [2, 3, 4, 5, 6, 17, 29, 33, 35]. Of much interest are probably the so-called
Tamari lattice [23, 35] obtained with the rotations on Dyck paths [7, 8, 17], and the Stanley
lattice [33] obtained with the covering DU → UD and where P ≤ Q if and only if P is
always below Q when we draw them in the quarter plane.

Throughout this paper, we focus on the family of sets Fp, p ≥ 2, where the elements are
Dyck paths in D avoiding the patterns DUU and Dp+1. The set of elements in Fp having
semilength n will be denoted Fp

n. We will also consider the set F∞ (resp. F∞
n ) of Dyck

paths (resp. of semilength n) avoiding the pattern DUU . Note the following inclusions for
all n ≥ 0, which will allow us to use discrete continuity arguments:

F2
n ⊆ F3

n ⊆ · · · ⊆ Fp
n ⊆ Fp+1

n ⊆ · · · ⊆ F∞
n .

Let P be a path in Fp
n. It can be written (uniquely)

(1.1) P = U i−1QUDi for some i ∈ {1, . . . , p} and Q ∈ Fp
n−i.

Note that P satisfies type(P ) = i. This decomposition implies that

|Fp
n| = |Fp

n−1|+ |Fp
n−2|+ . . .+ |Fp

n−p|,
which implies that Fp

n is enumerated by the generalized Fibonacci number F p
n . Similarly,

every path P in F∞
n can be decomposed either P = QUD or P = UQD for some Q ∈ F∞

n−1,
which implies |F∞

n | = 2n−1.
We equip Fp

n and F∞
n with the Stanley order ≤, and we denote by Fp

n = (Fp
n,≤) and

F∞
n = (F∞

n ,≤) the associated posets. See Figure 1 for an illustration of the Hasse diagrams
of F2

5 and F∞
4 . We will write P ⋖ Q when Q covers P , i.e., whenever Q is obtained from

P by a transformation DU → UD. We also say that P is a lower cover of Q, or Q is an
upper cover of P . Then Fp

n and F∞
n are distributive lattices, as sublattices of the Stanley

lattice. Indeed, let P,Q ∈ Fp
n (resp. F∞

n ), and let P ∧ Q and P ∨ Q be respectively their
meet (greatest lower bound) and their join (least upper bound) in the Stanley lattice. Then
P ∧Q (resp. P ∨Q) is obtained by considering the lower (resp. upper) envelope of the two
paths P and Q, so they both clearly belong to Fp

n (resp. F∞
n ). Clearly, these lattices are

ranked with the area below the path and above the x-axis.
We end this section by giving the classical concepts of partial order theory [22] that we use

in this study. A meet-irreducible (resp. join-irreducible) element is an element having exactly
one upper (resp. lower) cover. An interval [P,Q] in a poset P is the set {R ∈ P, P ≤ R ≤ Q}.
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The height of [P,Q] is the length of a maximal chain between P and Q. An interval is said
to be linear when all its elements are pairwise comparable. An interval is boolean when it is
isomorphic to a boolean lattice. See [5, 6, 9, 13, 14, 16, 18, 19, 20, 27] for several studies on
the enumeration of intervals into posets of Dyck paths.

Outline of the paper. In Section 2 we enumerate the elements of Fp
n (p ≥ 2) according

to their number of upper-covers. We deduce from that the number of boolean intervals in
Fp
n. We then use a discrete continuity argument to transfer those results to F∞

n . We also
count meet-irreducible elements in Fp

n which establishes a surprising link with the edges of
the (n, p)-Turán graph. In Section 3 we enumerate linear intervals, first in Fp

n for p ≥ 2,
and then in F∞

n , again using discrete continuity. In Section 4, we prove that intervals are
in one-to-one correspondence with bicolored Motzkin paths avoiding some patterns, which
allows us to enumerate intervals for p ∈ {2,∞}. Finally, we present in Section 5 bijections
between the Dyck paths of Fp

n and other classical combinatorial objects. This gives new
interpretations of the lattices Fp

n, in particular it can be seen as the well-known dominance
order on some compositions.

Figure 1. The Hasse diagrams of F2
5 (on the left) and F∞

4 (on the right).

2. Coverings, irreducible elements, boolean intervals.

In this section, we provide enumerative results for several characteristic elements (cover-
ings, join- and meet-irreducible elements, boolean intervals) in the lattices Fp

n, p ≥ 2, and
F∞
n .
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2.1. In the lattices Fp
n, p ≥ 2. Let Fp(x, y) be the bivariate generating function where the

coefficient of xnyk, n, k ≥ 0, in its series expansion is the number of elements in Fp
n that have

exactly k upper covers. In this part we provide a closed form for Fp(x, y), and we deduce the
bivariate generating function Bp(x, y) for the number of boolean intervals in Fp

n with respect
to n and the interval height.

Theorem 2.1. The generating function Fp(x, y) is given by

Fp(x, y) =
(1− x)(1 + (y − 1)xp)

1− 2x+ xp+1 − (y − 1)(x2 − xp + xp+1 − xp+2)
.

Proof. For the sake of consistency (only for this proof), even though it can look surprising
at first, we consider that the empty path ϵ (the only element of Fp

0 ) satisfies type(ϵ) = 1,
and UD (the only element of Fp

1 ) satisfies type(UD) = p.
For 1 ≤ i ≤ p, let f i

k(x) be the generating function for the number of elements of type i

in Fp
n having exactly k upper covers, and we set fk(x) =

p∑
i=1

f i
k(x). We then have

Fp(x, y) =
∑
k≥0

fk(x)y
k.

With the above convention, the empty path has type 1 and is covered by 0 element, so its
contribution will appear in f 1

0 (x). Similarly, UD has type p and is covered by 0 element, so
its contribution will appear in fp

0 (x).
Let P be a nonempty element in Fp

n such that type(P ) = i, and let P = U i−1QUDi be
its decomposition as described in (1.1). Assume that P has exactly k upper covers.
Case 1: P is of type i ∈ [1, p− 1]. We distinguish two subcases (a) and (b).

(a) type(Q) = 1. With the above convention, either Q is empty, or Q ends with UD and
Q ̸= UD. Then, P and Q have the same number of upper covers (in the case where
Q ends with UD, Q ̸= UD, we cannot have a covering involving the last valley DU
of P because the change DU → UD would create an occurrence DUU , see Figure 2).
So, the contribution of these paths is xif 1

k (x).

Q

Figure 2. Illustration of Case 1(a) in the proof of Theorem 2.1. The last
valley of P cannot produce a covering because this would create an occurrence

DUU .

(b) type(Q) ∈ [2, p]. The last valley DU of P can produce a covering by replacing DU
with UD, and the k− 1 remaining coverings are also coverings of Q. Note that with
our convention, it is consistent with the case Q = UD. Then, the contribution of
these paths is xi(f 2

k−1(x) + . . .+ fp
k−1(x)).
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Case 2: P is of type p. Then P and Q have the same number of coverings, and the
contribution of such paths is xp(f 1

k (x) + f 2
k (x) + . . .+ fp

k (x)).
Considering all these cases, we obtain the following system of equations for k ≥ 1:

(2.1)

{
f i
k(x) = xi(f 1

k (x) + f 2
k−1(x) + . . .+ fp

k−1(x)) for 1 ≤ i ≤ p− 1,
fp
k (x) = xp(f 1

k (x) + f 2
k (x) + . . .+ fp

k (x)),

with the initial conditions f 1
0 (x) = 1, fp

0 = x
1−x

, and f i
0(x) = 0 for 2 ≤ i ≤ p− 1. Indeed for

every n ≥ 0, the only path covered by 0 elements is the maximal one, and it has type 1 only
if n = 0, otherwise it has type p (remember our convention for n = 0 and n = 1).
Now let φk(x) = f 1

k (x) and θk(x) = f 2
k (x) + . . . + fp

k (x). From Equation (2.1), we get for
k ≥ 1 {

(1− x)φk(x) = xθk−1(x)
(1− xp)θk(x) = (x2 + . . .+ xp)φk(x) + (x2 + . . .+ xp−1)θk−1(x).

Observe that θ0(x) =
x

1−x
. Then we can solve for φk and θk when k ≥ 1:

φk(x) =

(
x2 − xp + xp+1 − xp+2

(1− x)2(1− xp)

)k−1

· x2

(1− x)2
, and

θk(x) =

(
x2 − xp + xp+1 − xp+2

(1− x)2(1− xp)

)k

· x

1− x
.

We deduce that for all k ≥ 1,

fk(x) = φk(x) + θk(x) =

(
x2 − xp + xp+1 − xp+2

(1− x)2(1− xp)

)k−1

· x2 − xp+1

(1− x)3(1− xp)
.

Finally, with f0(x) =
1

1−x
, we obtain

Fp(x, y) =
1

1− x
+

+∞∑
k=1

fk(x)y
k,

which yields the desired result after simplification. □

The first terms of the series expansions of Fp(x, y) for p = 2 and p = 3 are respectively

1 + x+ (1 + y)x2 + (1 + 2y)x3 + (1 + 4y)x4 + (1 + 6y + y2)x5 + (1 + 9y + 3y2)x6 +O(x7)

and

1+x+(1+y)x2+(1+3y)x3+(1+5y+y2)x4+(1+8y+4y2)x5+(1+12y+10y2+y3)x6+O(x7).

Corollary 2.2. The generating function for the number of coverings in Fp
n, n ≥ 0, is

∂yFp(x, y)|y=1 =
(1− x) (x2 − xp+1) (1− xp)

(1− 2x+ xp+1)2
.

The first terms of the series expansion of ∂yF2(x, y)|y=1 are

x2 + 2x3 + 4x4 + 8x5 + 15x6 + 28x7 + 51x8 + 92x9 +O(x10),

and the sequence of coefficients corresponds to A029907 in [30] where the n-th term an
satisfies an+1 = an+ an−1+Fn, where a0 = a1 = 0 and Fn is the n-th Fibonacci number (see
Section 1). The sequences for p ≥ 3 do not seem to appear in [30].
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Moreover, the generating function f1(x) =
x2−xp+1

(1−x)3(1−xp)
(which is the coefficient of y in the

series expansion of Fp(x, y)) counts the number of meet-irreducible elements in Fp
n (elements

having exactly one upper cover). For p = 2 the first terms of the series expansion are

x2 + 2x3 + 4x4 + 6x5 + 9x6 + 12x7 + 16x8 + 20x9 + 25x10 +O(x11).

The sequence of coefficients corresponds to A002620 in [30], where the n-th term is b2(n) =

⌊n2

4
⌋. More generally (p ≥ 2), the following theorem provides a surprising link between the

n-th coefficient bp(n) and a well-known parameter in extremal graph theory.

Theorem 2.3. For any p ≥ 2, the number of meet-irreducible elements in Fp
n, that is the

n-th coefficient of f1(x), is given by

bp(n) =

⌊
n2(p− 1)

2p

⌋
,

which also counts the number of edges in the (n, p)-Turán graph (see A198787 in [30], and
[1, 12, 36]).

Proof. We present an analytic proof, showing that the generating function of
⌊
n2(p−1)

2p

⌋
is

f1(x). Considering the equality⌊
n2(p− 1)

2p

⌋
=

(
1− 1

p

)
n2

2
− (n mod p)(p− (n mod p))

2p
,

and observing that the generating functions of (n mod p) and (n mod p)2 satisfy

+∞∑
n=0

(n mod p)xn =

(
p−1∑
k=0

kxk

)(
+∞∑
k=0

xpn

)
=

(p− 1)xp+1 − pxp + x

(1− x)2(1− xp)
,

and

+∞∑
n=0

(n mod p)2xn =

(
p−1∑
k=0

k2xk

)(
+∞∑
k=0

xpn

)

=
(2p2 − 2p− 1)xp+1 − (p− 1)2xp+2 − p2xp + x2 + x

(1− x)3(1− xp)
,

we can check that
∑+∞

n=0

⌊
n2(p−1)

2p

⌋
xn = x2−xp+1

(1−x)3(1−xp)
= f1(x). □

From Theorem 2.1, we can easily deduce the following.

Corollary 2.4. The generating function Bp(x, y) for the number of boolean intervals in Fp
n,

with respect to the semilength n ≥ 0, and the interval height is given by

Bp(x, y) =
(1− x)(1 + yxp)

1− 2x+ xp+1 − y(x2 − xp + xp+1 − xp+2)
.

Proof. As a direct consequence of the distributivity of Fp
n, we have that Bp(x, y) = Fp(x, 1+

y), see for instance [33, Exercise 3.19]. □
6
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The first terms of the series expansion of B2(x, y) are

1 + x+ (2 + y)x2 + (3 + 2y)x3 + (5 + 4y)x4 + (8 + 8y + y2)x5 + (13 + 15y + 3y2)x6 +O(x7).

For p = 2, we find B2(x, 1) =
1+x2

1−x−x2−x3 , so the boolean intervals of F2
n are enumerated by the

Tribonacci numbers (A000213 in [30]). For p = 3, the number sequence of boolean intervals
in F3

n also appears in [30] (see A193641). It seems to be the only two values of p ≥ 2 such
that the sequence appears in [30].

Corollary 2.5. The coefficient of xnyk in Fp(x, y) is also the number of elements in Fp
n that

have exactly k lower covers.

Proof. Let Gp(x, y) be the generating function whose coefficient of xnyk is the number of
elements in Fp

n that have exactly k lower covers. Again by the distributivity of Fp
n [33,

Exercise 3.19], we have Bp(x, y) = Gp(x, 1 + y) = Fp(x, 1 + y), so Gp(x, y) = Fp(x, y). □

Remark 2.6. For (k, ℓ) ∈ N2, we say that an element P ∈ Fp
n has degree (k, ℓ) if P has

k upper covers and ℓ lower covers. Given Corollary 2.5, we could ask if there are as many
elements with degree (k, ℓ) as elements with degree (ℓ, k) in Fp

n. Actually this is not the
case for infinitely many values of (n, p). Indeed, for n > p and (n mod p) ̸∈ {0, 1}, the
maximal element has degree (0, 2), but the minimal element has degree (1, 0). However
those two elements are the only ones whose degree has a 0-coordinate. We will see later with
Theorem 5.4 that the distribution of the degree is always symmetric in F∞

n .

2.2. In the lattice F∞
n . Let F∞(x, y) be the bivariate generating function where the coef-

ficient of xnyk, n, k ≥ 0, in its series expansion is the number of elements in F∞
n that have

exactly k upper covers, and let B∞(x, y) be the bivariate generating function for the number
of boolean intervals in F∞

n with respect to n and the interval height.
It is possible to make a similar study for F∞

n as in the proofs of Theorem 2.1, and Corol-
lary 2.4. However, we can also use a discrete continuity argument. Indeed, for any P ∈ F∞

n ,
there exists p ≥ 2 sufficiently large such that P ∈ Fp

n. In fact, for any n ≥ 0, we have
F∞

n = Fn
n . Thus, if valx(·) denotes the valuation of a power series in the variable x, then

valx(F∞(x, y)− Fp(x, y)) ≥ p for all p ≥ 2. Thus, F∞(x, y) = limp→∞ Fp(x, y) (relatively to
the metric valx(·)), and B∞(x, y) = limp→∞Bp(x, y). Therefore, we have the following.

Corollary 2.7. The generating functions F∞(x, y) and B∞(x, y) are given by

F∞(x, y) =
1− x

1− 2x+ (1− y)x2
, and B∞(x, y) =

1− x

1− 2x− x2y
.

The number of coverings is

[xn]∂yF∞(x, y)|y=1 = n · 2n−3 if n ≥ 2, and 0 otherwise,

which corresponds to A001792 in [30].
The number of boolean intervals in F∞

n is

[xn]B∞(x, 1) =

⌊n/2⌋∑
k=0

(
n

n− 2k

)
2k,

which corresponds to A078057 in [30].

The number of meet-irreducible elements (resp. join-irreducible) is n(n−1)
2

.
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The first terms of the series expansions of F∞(x, y) and B∞(x, y) are respectively

1+x+(1+y)x2+(1+3y)x3+(1+6y+y2)x4+(1+10y+5y2)x5+(1+15y+15y2+y3)x6+O(x7),

and

1+x+(2+y)x2+(4+3y)x3+(8+8y+y2)x4+(16+20y+5y2)x5+(32+48y+18y2+y3)x6+O(x7).

Theorem 2.8. For all n ≥ 0, let Bn be a random variable following the uniform distribution

over the boolean intervals of F∞
n , and let Xn be the height of Bn. Then

4Xn−(2−
√
2)n√

n 4√2
converges

in law to a standard normal distribution.

Proof. We use singularity analysis, see [21]. Let y belong to a neighbourhood of 1. The main

singularity of B∞(x, y) is then
√
1+y−1
y

, and near this singularity, we have the approximation

B∞(x, y) ∼ 1

2

(
1− yx√

1 + y − 1

)−1

.

Since [xn]B∞(x, 1) ∼ (
√
2−1)−n

2
, we have

[xn]B∞(x, y)

[xn]B∞(x, 1)
∼

(
y(
√
2− 1)√

1 + y − 1

)n

,

then Xn can be approximated by a sum of independent random variables with generating

function y 7→ y(
√
2−1)√

1+y−1
. Since the last distribution has expected value (2 −

√
2)/4 and stan-

dard deviation 4
√
2/4, by the central limit theorem, we have the convergence in law of the

standardized version of Xn to a standard normal distribution. □

Definition 2.9. The Möbius function µ on a poset P is defined [11, 15] recursively by

µ(P,Q) =


0 if P ̸≤ Q,
1 if P = Q, and

−
∑

P≤R<Q µ(P,R) for all P < Q.

Since Fp
n is a finite distributive lattice, it is well-known (see for instance [33]) that, for

any P,Q ∈ Fp
n, the Möbius function µ(P,Q) is equal to 0 if the interval [P,Q] is not

boolean, and otherwise µ(P,Q) = (−1)h, where h is the height of [P,Q]. Again by the
distributivity, if [P,Q] is boolean, then Q is the join of the upper covers of P . This im-
plies that there exist factors α1, . . . , αh+1 such that P = α1DUα2DUα3 . . . αkDUαh+1 and
Q = α1UDα2UDα3 . . . αkUDαh+1. In terms of the rank function ρ of the lattice (namely
the area between the path and the x-axis, as mentioned in Section 1), h = ρ(Q)− ρ(P ). See
also Remark 5.3 for an alternative definition of the rank.

3. Linear intervals

In this section, we focus on the enumeration of the linear intervals in Fp
n, p ≥ 2, and

F∞
n . We first give three lemmas that characterize the structure of linear intervals. Next, we

deduce the generating function for the number of linear intervals in Fp
n with respect to n and

the interval height. Since degenerate cases arise only for p = 2, the enumerations for p = 2
and p ≥ 3 are handled separately in two distinct subsections. The generating function for
the case p = ∞ is obtained using a discrete continuity argument.
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Lemma 3.1. Let P,Q ∈ Fp
n, p ≥ 2, and 1 ≤ i ≤ p, such that i = type(P ) = type(Q).

Then we have [P,Q] = [U i−1P ′UDi, U i−1Q′UDi] and [P,Q] is a linear interval if and only
if [P ′, Q′] is a linear interval in Fp

n−i.

P ′

Di

Q′

Structure (1)

Figure 3. The structure of linear intervals [P,Q] in Fp
n when

type(P ) = type(Q). See Lemma 3.1
.

Proof. Since P and Q have the same type i, we can decompose P = U i−1P ′UDi and Q =
U i−1Q′UDi, with P ′, Q′ ∈ Fp

n−i. Clearly, the two intervals [P ′, Q′] and [P,Q] are isomorphic
as posets, which complete the proof. See Figure 3. □

Lemma 3.2. Let P,Q ∈ Fp
n, p ≥ 3, such that type(Q) ≥ type(P ) + 2. If i := type(P ) and

j := type(Q), then [P,Q] is a linear interval if and only if

(a) [P,Q] = [Un−3(UD)3Dn−3, UnDn], 3 ≤ n ≤ p, or
(b) [P,Q] = [U j−1RDj−iUDi, U j−1RUDj], with R empty or R ∈ Fp

n−j and type(R) ∈
[1, p− (j − i)].

Structure (2a)

R

Structure (2b)

Figure 4. The structure of linear intervals [P,Q] in Fp
n when

type(Q) ≥ type(P ) + 2. See Lemma 3.2

Proof. It is direct to check that intervals of the form (a) or (b) are linear (see Figure 4),
so we focus on the converse. Let [P,Q] be a linear interval such that i := type(P ) and
j := type(Q) with j ≥ i + 2. We can write P = U i−1P ′Di−1, where P ′ ∈ Fp

n−i+1 is
nonempty and type(P ′) = 1. Similarly, Q = U i−1Q′Di−1, where Q′ ∈ Fn−i+1 is nonempty
and type(Q′) = j− i+1. Note that the intervals [P,Q] and [P ′, Q′] are isomorphic as posets.
So, let us distinguish four cases depending on the form of P ′.
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(i) Suppose that P ′ = (UD)n−i+1. Since j−i ≥ 2, we have necessarily n−i+1 ≥ 3. By a
simple observation, if n− i+1 = 3, then [P,Q] has the form (a). If n− i+1 ≥ 4, then
[P ′, Q′] cannot be a linear interval. Indeed, U(UD)n−iD and U3D2UD2(UD)n−i−3

both belong to [P ′, Q′] (they are obviously greater than P ′, and they are lower than
Q′ because j − i ≥ 2), and these two paths are not comparable, which condemns the
linearity of [P ′, Q′], and so the one of [P,Q].

(ii) Suppose that there exist k ≥ 3, k′ ≥ 2 and a prefix S such that P ′ = SDk(UD)k
′
,

then [P ′, Q′] cannot be a linear interval. Indeed, the paths SDk−2UD3(UD)k
′−1 and

SDk−1(UD)2D(UD)k
′−2 both belong to [P ′, Q′] and they are not comparable.

(iii) Suppose that there exist k′ ≥ 2 and a prefix S such that P ′ = SDUD2(UD)k
′
, then

[P ′, Q′] cannot be a linear interval. Indeed, SUD3(UD)k
′
and SD(UD)2D(UD)k

′−1

both belong to [P ′, Q′] but they are not comparable.
(iv) Suppose that P ′ = U2D2(UD)n−i−1, then [P ′, Q′] cannot be a linear interval. Indeed,

U3D3(UD)n−i−2 and U(UD)3D(UD)n−i−2 both belong to [P ′, Q′] but they are not
comparable.

We have proved that either [P,Q] has the form (a), or P ′ has the form P ′ = SUDkUD
with 2 ≤ k ≤ j − i (i.e. k′ = 1 with this above notation).

If k < j − i, [P ′, Q′] cannot be a linear interval. Indeed , in this case we can write
P ′ = TDUDkUD, and the paths TDUDk+1UD and TDUDk−1UD2 both belong to [P ′, Q′],
and they are not comparable.

If k = j − i, then P can be decomposed P = U j−1P ′Dj−iUDi, with P ′ ∈ Fp
n−j. Since Q

has type j we also have Q = U j−1Q′Dj−iUDi, with Q′ ∈ Fp
n−j. Now if P ′ ̸= Q′, [P ′, Q′] is a

non trivial interval in Fp
n−j, so there exists R′ ∈ [P ′, Q′] covering P ′. Then U j−1R′Dj−iUDi

and U j−1P ′Dj−i−1UDi+1 both belong to [P,Q], but they are not comparable, contradicting
once again the linearity. We conclude that P ′ = Q′, so [P,Q] has the form (b). □

Lemma 3.3. Let P,Q ∈ Fp
n, p ≥ 2, such that type(Q) = type(P ) + 1. If i := type(P ) and

j := type(Q), then [P,Q] is a linear interval if and only if

(a) [P,Q] = [U iR(DU)kDi, U iR(UD)kDi] with k ≥ 1, R empty, or R ∈ Fp
n−k−i and

type(R) ∈ [1, p− 1], or
(b) [P,Q] = [Uk(p−1)+iRD(UDp)kUDi, Uk(p−1)+iR(UDp)kUDi+1], with k ≥ 1, R empty

or R ∈ Fp
n−kp−i−1, and and type(R) ∈ [1, p− 1], or

(c) [P,Q] = [U2D2(UD)2, U3D2UD2], or [P,Q] = [(UD)4, U3D2UD2], with p = 2.

Proof. We can easily check that the three statements hold for n ≤ 4 (see Figure 5). Thus,
we suppose n ≥ 5 which rules out the case (c). An interval of the form (a) or (b) is clearly
linear, thus we focus on the converse.

Let [P,Q] be a linear interval. Since j − i = 1, P ends with DUDi, and Q ends with
UDi+1.

(i) Assume that P ends with UDUDi. If [P,Q] = [U iDUDi, U i+1Di+1], then [P,Q]
has the form (a) with k = 1 and R empty. Otherwise, let k (resp. ℓ) be the
greatest integer such that P = P ′(DU)kDi (resp. ℓ ≤ k and Q = Q′(UD)ℓDi).
For a contradiction, let us assume ℓ < k. If P ′ = U i (this implies k − ℓ ≥ 2),
the paths U i(UD)k−ℓ+1(DU)ℓ−1Di and U i+2D2(UD)k−ℓ−2(DU)ℓDi both belong to
[P,Q], and they are not comparable, which contradicts the linearity of [P,Q]. If

10



. . .

. . .
R

Structure (3a)

R

Structure (3b)

p

p

Structure (3c) Structure (3c)

Figure 5. The structure of linear intervals [P,Q] in Fp
n when

type(Q) = type(P ) + 1. See Lemma 3.3

P ′ = P ′′D, then we obtain a contradiction with P ′′D(UD)k−ℓ+1(DU)ℓ−1Di and
P ′′UD2(UD)k−ℓ−1(DU)ℓDi. This proves that we necessarily have k = ℓ and thus
P = U iP ′(DU)kDi and Q = U iQ′(UD)kDi for some P ′, Q′ ∈ Fp

n−k−i with types
between 1 and p− 1. We conclude that P ′ = Q′ as at the end of the proof of Lemma
3.2. Finally we have that [P,Q] has the form (a).

(ii) Assume that P ends with D2UDi. We have P = P ′DUDi and Q = Q′UDi+1. If
P ′ = Q′, then [P,Q] has the form (a) with k = 1. So we assume P ′ ̸= Q′. Let m,
1 ≤ m ≤ p be the integer such that P ends with UDmUDi, and m − 1 ≤ ℓ ≤ p
such that Q ends with UDℓUDi+1. For a contradiction suppose ℓ = m − 1. Then
P = P ′′DUDmUDi and Q = Q′′DUDm−1UDi+1. Since P ′ ̸= Q′, there exists some
T ≤ Q′′ and such that T covers P ′′. So TDUDmUDi and P ′′DUDm−1UDi+1 are not
comparable which contradicts the linearity of [P,Q]. So, let us consider ℓ ≥ m. We
cannot have m < p, since P ′′DUDm−1UDi+1 and P ′′UDm+1UDi are not comparable
which would contradict the linearity of [P,Q]. We conclude that m = ℓ = p. Let k
be the greatest integer such that P = P ′′D(UDp)kUDi and Q = Q′′(UDp)kUDi+1.
Using the maximality of k and a similar argument as before, we can easily conclude
that P ′′ = Q′′, proving that [P,Q] has the form (b).

□

Let Lp(x, y) be the generating function where the coefficient of xnyk in its series expansion
is the number of linear intervals of height k in Fp

n. We handle separately the three cases
p = 2, p ≥ 3, and p = ∞.

3.1. In the lattices F2
n. In this part, we fix p = 2.

Theorem 3.4. The generating function L2(x, y) of the number of linear intervals in F2
n with

respect to n and the interval height is given by

L2(x, y) =
x4y4 + y3x4 + 1

1− x− x2
+

x2y (x2 − 1) (x3y2 − 1)

(xy − 1) (x2 + x− 1)2 (x2y − 1)
.

11



Proof. Let [P,Q] be a linear interval in F2
n. According to the lemmas above, we have two

cases to consider: (i) type(P ) = type(Q) and (ii) type(P ) = 1 and type(Q) = 2. Since
p = 2, Lemma 3.2 is not considered.

Case (i). Using Lemma 3.1, we have [P,Q] = [P ′UD,Q′UD] (resp. [P,Q] = [UP ′UD2, UQ′UD2])
where [P ′, Q′] is a linear interval in F2

n−1 (resp. F2
n−2). Then the contribution of these inter-

vals is

xL2(x, y) + x2L2(x, y).

Case (ii). Using Lemma 3.3, the contribution of intervals from the statement (3a) is

x2y

1− xy
· (xF (x) + 1),

where xF (x) + 1 is the generating function for the empty path and paths in F2 of type
1, with F (x) = 1

1−x−x2 is the generating function for all paths in F2. The contribution of
intervals with structure (3b) is

x4y2

1− x2y
· (xF (x) + 1).

The contribution of intervals with structure (3c) is x4y3 + x4y4. Finally, we obtain the
following equation for L2(x, y):

L2(x, y) = 1 + x(1 + x)L2(x, y) + x4y3 + x4y4 +

(
x2y

1− xy
+

x4y2

1− x2y

)
· (xF (x) + 1),

which induces the desired expression of L2(x, y). □

The first terms of the series expansion of L2(x, y) are

1 + x+ (2 + y)x2 + (3 + 2y + y2)x3 + (5 + 4y + 3y2 + 2y3 + y4)x4

+(8 + 8y + 6y2 + 3y3 + 2y4)x5 + (13 + 15y + 12y2 + 7y3 + 4y4 + y5)x6 +O(x7).

Corollary 3.5. The generating function of the number of linear intervals in F2
n is given by

L2(x, 1) =
1− x+ x3 + 3x4 − 2x5 − 2x6

(x2 + x− 1)2
,

and the coefficient of xn in the series expansion is [x0]L2(x, 1) = [x1]L2(x, 1) = 1, [x2]L2(x, 1) =
3, and

[xn]L2(x, 1) =
4 (n+ 5)Fn − (2n+ 27)Fn−1

5
for n ≥ 3,

where Fn is the n-th Fibonacci number (see Section 1). An asymptotic approximation for the
number of linear intervals in F2

n is

3n

5

(
1 +

√
5

2

)n

.

Proof. The closed form of the n-th term is obtain by decomposing the rational fraction into
partial fractions. The asymptotic is easily obtained from a classical singularity analysis, see
for instance [21]. □
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Corollary 3.6. The generating function of the limit distribution of the height of the linear
intervals in F2

n as n → ∞ is given by

y((7− 3
√
5)y2 + (7− 3

√
5)y − 2)

6((2−
√
5)y2 + y − 1)

.

In particular it has expected value 3+
√
5

2
, and variance 7+2

√
5

3
.

Proof. We use singularity analysis, see [21]. The main singularity in x of L2(x, y) is
√
5−1
2

, in
particular it does not depend on y. The limit law of the height of the linear intervals in F2

n

as n → ∞ is then discrete. Near this singularity, we have the approximation

L2(x, y) ∼
(−16y3 − 16y2 + 2y)

√
5 + 36y(y2 + y − 1/6)

5(y
√
5− y − 2)(y

√
5− 3y + 2)

(
x−

√
5− 1

2

)−2

.

We deduce that

[xn]L2(x, y)

[xn]L2(x, 1)
−→
n→∞

(−16y3 − 16y2 + 2y)
√
5 + 36y(y2 + y − 1/6)

5(y
√
5− y − 2)(y

√
5− 3y + 2)

· 5
2
· 3 +

√
5

2
,

which yields the desired generating function after simplification. □

3.2. In the lattices Fp
n, p ≥ 3. In this part, we fix p ≥ 3. Recall that the generating

function Fp(x) for the number of elements in Fp
n, n ≥ 0, is Fp(x) =

1
1−x−x2−···−xp . We also set

Gp(x) := 1− x− x2 − . . .− xp.

Theorem 3.7. The generating function Lp(x, y) of the number of linear intervals in Fp
n,

n ≥ 0, with respect to n and the interval height is

Lp(x, y) = Fp(x) ·
(
1 +

x3y3(1− xp−2)

1− x
+ Vp(x, y) +Wp(x, y)

)
,

where

Vp(x, y) =
∑

1≤i,j≤p
j−i≥2

xjyj−i

(
1 +

x+ x2 + . . .+ xp−(j−i)

Gp(x)

)
,

Wp(x, y) =
y(1− xp)(x2 − xp+1)(1− xp+1y2)

(1− x)(1− xy)(1− xpy)Gp(x)
.

Proof. Let [P,Q] be a linear interval in Fp
n. According to the lemmas above, we have three

cases to consider: (i) type(P ) = type(Q), (ii) type(Q) ≥ type(Q) + 2, and (iii) type(Q) =
type(Q) + 1.

Case (i). Using Lemma 3.1, we have [P,Q] = [U i−1P ′UDi, U i−1Q′UDi], 1 ≤ i ≤ p, where
[P ′, Q′] is a linear interval in Fp

n−i. Then the contribution of these intervals is

xLp(x, y) + x2Lp(x, y) + . . .+ xpLp(x, y) = (1−Gp(x)) · Lp(x, y).

Case (ii). Using Lemma 3.2, the contribution of paths of structure (2a) is given by

x3y3
p−3∑
i=0

xi =
x3y3(1− xp−2)

1− x
.
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Let Vp(x, y) be the contribution of paths of structure (2b). Since R is either empty or has
type between 1 and p− (j − i), the generating function for these paths R is

1 + (x+ x2 + . . .+ xp−(j−i))Fp(x).

Multiplying by xjyj−i and summing for 1 ≤ i, j ≤ p with j − i ≥ 2, we obtain the desired
result for Vp(x, y):

Vp(x, y) =
∑

1≤i,j≤p
j−i≥2

xjyj−i

(
1 +

x+ x2 + . . .+ xp−(j−i)

Gp(x)

)
.

Case (iii). Using Lemma 3.3, the contribution for paths belonging of structure (3a) is
the contribution of R of type in [1, p− 1] (i.e. 1 + (x+ x2 + . . .+ xp−1)Fp(x)) multiplied by
the contribution of [U i(DU)kDi, U i(UD)kDi] for k ≥ 1 and 1 ≤ i ≤ p− 1, which gives

+∞∑
k=1

xi+kyk =
xi+1y

1− xy
.

For structure (3b), R has the same contribution as for the previous case (3a), and we need
to multiply by the contribution of [Uk(p−1)+iD(UDp)kUDi, Uk(p−1)+i(UDp)kUDi+1], with k ≥
1 and 1 ≤ i ≤ p− 1. So the generating function is

p−1∑
i=1

+∞∑
k=1

xi+1+kpyk+1 =
xp+i+1y2

1− xpy
.

Paths of structures (3c) have no contribution for p ≥ 3.
Finally, the generating function for structure (3) is

Wp(x, y) =

p−1∑
i=1

(
xi+1y

1− xy
+

xp+i+1y2

1− xpy

)(
1 +

x+ x2 + . . .+ xp−1

Gp(x)

)
,

which can be simplified as in the Theorem after computation. Finally, adding everything up
we obtain the expected result for Lp(x, y). □

Remark 3.8. We did not succeed to obtain a nice closed form for Lp(x, y). However, even
though the expression of Lp(x, y) is quite heavy, we can observe that its main singularity
is the smallest root rp of Gp(x). In particular it does not depend on y. This yields, see
for instance [21], that the limit law of the length of the linear intervals in Fp

n as n → ∞ is
discrete. Furthermore, rp is a singularity of multiplicity 2 in Lp(x, 1), thus the number of
linear intervals in Fp

n is asymptotically c ·n ·r−n
p for some constant c (see [21]), so by Corollary

2.2, it is proportional to the number of coverings.

3.3. In the lattice F∞
n . The generating function L∞(x, y) for the linear interval in F∞

n is
obtained using a discrete continuity argument.

Corollary 3.9. The generating function of the linear intervals in F∞
n with respect to n and

the interval height is given by

L∞(x, y) =
1− y2(1 + y)2x4 + 2x5y4 − (3− y − y2)x3y + 2(2y + 1)x2 − (3 + y)x

(1− xy)(1− 2x)2
.
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Proof. Once again we could go through the structure of the linear intervals in F∞
n and do a

similar proof as for Fp
n, but we can also use a discrete continuity argument, as in Corollary

2.7. Indeed, with the same argument, we have Lp → L∞ as p → ∞. We have the following
limits as p → ∞:

Gp(x) →
1− 2x

1− x
,

x3y3(1− xp−2)

1− x
→ x3y3

1− x
, Wp(x, y) →

x2y

(1− xy)(1− 2x)
,

and with the help of a computer algebra program, Vp(x, y) → x3y2

(1−xy)(1−2x)
. We deduce that

L∞(x, y) =
1− x

1− 2x

(
1 +

x3y3

1− x
+

x2y

(1− xy)(1− 2x)
+

x3y2

(1− xy)(1− 2x)

)
,

which gives the desired expression. □

Corollary 3.10. The generating function for the number of linear intervals in F∞
n is

L∞(x, 1) =
1− 3x+ 3x2 + 2x3 − 2x4

(1− 2x)2
,

and the coefficient of xn in the series expansion is [x0]L∞(x, 1) = [x1]L∞(x, 1) = 1, [x2]L∞(x, 1) =
3, and

[xn]L∞(x, 1) = (3n+ 1) · 2n−3 for n ≥ 3.

Corollary 3.11. The generating function of the limit distribution of the length of the linear
intervals in F∞

n as n → ∞ is given by

y(2 + y)

3(2− y)
.

This is a ‘geometric-like’ law with parameter 1/2. It has expected value 7/3, variance 20/9,
and if pk denotes the asymptotic proportion of linear intervals having length k, then p0 = 0,

p1 = 1/3,
pk = 1

3·2k−2 for k ≥ 2.

Proof. Near 1/2, the main singularity of L∞(x, y), we have the following approximation:

L∞(x, y) ∼ y(2 + y)

32(2− y)

(
1

2
− x

)−2

.

We then easily deduce the desired generating function:

[xn]L(x, y)

[xn]L(x, 1)
−→

n→+∞

y(2 + y)

3(2− y)
=

y

3
+
∑
k≥2

yk

3 · 2k−2
.

□
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4. Intervals

In this section we count intervals in F2
n and F∞

n . A crucial point in our study is the
following three facts which can be checked with a simple observation.

Fact 4.1. Let m,n ≥ 1, and let [P ′, Q′] be an interval of F2
n (resp. F∞

n ). Delete in P ′ and
Q′ the first peak UD, to obtain two paths P and Q of F2

n−1 (resp. F∞
n−1). Then they form an

interval [P,Q].

Fact 4.2. Conversely, start from an interval [P,Q] = [U iDkα, U jDℓβ] in F∞
n−1 where k, ℓ ≥ 1

are maximal and α, β possibly empty. Inserting a peak UD in the first ascents of P and Q,
starting at heights a ∈ [0, i] and b ∈ [0, j] respectively, yields an interval [P ′, Q′] in F∞

n if and
only if a ∈ {i− 1, i}, b ∈ {j − 1, j} and a ≤ b.

Fact 4.3. Conversely, start from an interval [P,Q] = [U iDkα, U jDℓβ] in F2
n−1 where k, ℓ ∈

{1, 2} are maximal and α, β possibly empty. Inserting a peak UD in the first ascents of P
and Q, starting at heights a ∈ [0, i] and b ∈ [0, j] respectively, yields an interval [P ′, Q′] in
F2
n if and only if

(1) a ∈ {i− 1, i}, b ∈ {j − 1, j}, a ≤ b, when k = ℓ = 1,
(2) a ∈ {i− 1, i}, b = j − 1, a ≤ b, when k = 1, ℓ = 2,
(3) a = i− 1, b ∈ {j − 1, j}, when k = 2, ℓ = 1,
(4) a = i− 1, b = j − 1, when k = 2, ℓ = 2.

4.1. In the lattice F∞
n . According to Fact 4.2, the rule that describes the first ascent

lengths of paths P ′ ≤ Q′ obtained from [P,Q] ∈ F∞
n in terms of the first ascent lengths a

and b of P and Q is

(4.1) (a, b) →
{

(a, b+ 1), (a+ 1, b+ 1), (a, b), if b− a = 0,
(a, b+ 1), (a+ 1, b+ 1), (a, b), (a+ 1, b), if b− a ≥ 1,

starting with the root (1, 1) corresponding to the interval [UD,UD]. In fact, the above rules
describe the construction of some paths in the first quadrant of the plane.

Theorem 4.4. There is a bijection between intervals in F∞
n and bicolored Motzkin paths

of length n − 1 in the quarter plane, i.e., paths in the quarter plane starting at (0, 0) and
consisting of n− 1 steps U = (1, 1), D = (1,−1), F1 = (1, 0), F2 = (1, 0).

Proof. To see the bijection, it suffices to rewrite the above rules in an equivalent system (in
the sense where the rules generate an isomorphic generating tree). We start at the origin
(0, 0) of the plane (corresponding to the interval [UD,UD]), and after x steps, if we are at
the point (x, y), we can jump to the following points

(x, y) →
{

(x+ 1, y + 1), (x+ 1, y)1, (x+ 1, y)2, if y = 0,
(x+ 1, y + 1), (y + 1, y)1, (x+ 1, y)2, (x+ 1, y − 1), if y > 0.

In comparison to (4.1), x is the number of steps, and y = b − a. Note that we use the
subscripts 1 and 2 to distinguish the step (a, b) → (a, b) from (a, b) → (a + 1, b + 1). The
bicolored Motzkin path is then constructed from the origin (0, 0) using steps U = (1, 1),
D = (1,−1), F1 = (1, 0), F2 = (1, 0) corresponding to the rules (x, y) → (x + 1, y + 1),
(x, y) → (x+1, y−1), (x, y) → (x+1, y)1 and (x, y) → (x+1, y)2, respectively. See Figure 6
for an illustration of the bijection. □
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U F2 U D

F1

UF2

Figure 6. The generation of the interval [U2(UD)3D2(UD)3, U4(UD)2D2(UD2)2]
using the rules in the proof of Theorem 4.4. This interval is thus associated with the

bicolored Motzkin path UF2UDF1UF2.

Theorem 4.5. The generating function I(x, y) where the coefficient xnyk is the number of
intervals [P,Q] ∈ F∞

n such that the difference between the lengths of the first ascent of Q and
P equals k, is given by

I(x, y) = 1 +
2x

1− 2x− 2xy +
√
1− 4x

.

The generating function for the number of intervals is

I(x, 1) =
1

2

(
1 +

1√
1− 4x

)
,

and the coefficient of xn in the series expansion is given by
(
2n−1
n

)
. (A001700 with a shift in

[30]).

Proof. By Theorem 4.4, it suffices to count the bicolored Motzkin paths of length n ending
at ordinate k. Let Mk

n be the set of these paths and Mk the set of these paths of any length.
Let M(x, y) be the generating function for these paths, x tracking the length and y the final
height. A nonempty Motzkin path M ending at height k ≥ 0 can be decomposed either
M = UM1 with M1 ∈ Mk−1

n−1, or M = F1M1 or M = F2M1 with M1 ∈ Mk
n−1, or UM1DM2

where M1 ∈ M0 and M2 ∈ Mk, From this decomposition We deduce the functional equation

M(x, y) = 1 + (2x+ xy + x2M(x, 0))M(x, y),

and so

M(x, y) =
2

1− 2x− 2xy +
√
1− 4x

.

Finally, we obtain I(x, y) and I(x, 1) with the shift I(x, y) = 1 + xM(x, y). □
17
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4.2. In the lattice F2
n. According to Fact 4.3, the rules that describe the first descent

lengths of paths P ′ ≤ Q′ obtained from [P,Q] ∈ F∞
n in terms of the first descent lengths

(a, b) of P and Q, with respect to the difference k of the lengths of ascents of Q and P is
(1, 1)k → (1, 1)0, (2, 2)0, (1, 2)1, k = 0,
(1, 1)k → (1, 1)k, (2, 2)k, (1, 2)k+1, (2, 1)k−1, k ≥ 1,
(1, 2)k → (1, 1)k, (2, 1)k−1, k ≥ 1,
(2, 1)k → (1, 1)k, (1, 2)k+1, k ≥ 0,
(2, 2)k → (1, 1)k, k ≥ 0,

starting with the root (1, 1)0 corresponding to the interval [UD,UD]. In fact, the above
rules describe the construction of some paths in the first quadrant of the plane.

Theorem 4.6. There is a bijection between intervals in F2
n and bicolored Motzkin paths of

length n− 1 and avoiding the seven patterns F2F2, F2D,F2U,DF2, UF2, UU,DD.

Proof. Using the previous rules, we associate a bicolored Motzkin path with each generated
interval by the following process. The bicolored Motzkin path is constructed from the origin
(0, 0) using steps U = (1, 1), D = (1,−1), F1 = (1, 0), F2 = (1, 0) corresponding, respectively,
to the rules (a, b) → (1, 2), (a, b) → (2, 1), (a, b) → (1, 1) and (a, b) → (2, 2). See Figure 7
for an illustration of the bijection. Note that the subscript k in (a, b)k corresponds to
the final height of the Motzkin path, and since it is always non-negative, the obtained
lattice paths stay in the first quarter of the plane. Finally, the one-to-one correspondence
between interval and bicolored Motzkin paths is obtained with the avoidance of the patterns
F2F2, F2D,F2U,DF2, UF2, UU,DD. Indeed, for example the above system does not have
two consecutive rules of the form (a, b) → (2, 2) which is equivalent to the avoidance of F2F2.
The other avoidances can be obtained mutatis mutandis. □

U F2 F1 F2

U
DF2

Figure 7. The generation of the interval [U2(UD)2(DU)2D2(UD)2, U3(UD)2(UD2)3]
using the rules in the proof on Theorem 4.6. This interval is thus associated with the

bicolored Motzkin path UF2F1F2UDF2.
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Theorem 4.7. The generating function J(x, y) for the number of intervals [P,Q] in F2
n with

respect to n and the difference of the lengths of ascents of Q and P is given by

J(x, y) =
1 + x− x2 +

√
x4 − 2x3 − x2 − 2x+ 1

(1− x2)
√
x4 − 2x3 − x2 − 2x+ 1 + 1 + x4 − x3 − 2(y + 1)x2 − x

.

The generating function J(x, 1) for the number of intervals [P,Q] in F2
n is

J(x, 1) =
−x2 + 3x− 1 +

√
x4 − 2x3 − x2 − 2x+ 1

2x(x2 − 3x+ 1)(x+ 1)
.

The coefficient of xn in the series expansion is asymptotically

11 + 5
√
5

20

√
14
√
5− 30

π
· n−1/2

(
3 +

√
5

2

)n

.

Proof. By Theorem 4.6, it suffices to count bicolored Motzkin paths avoiding the patterns
F2F2, F2D,F2U,DF2, UF2, UU,DD with respect to the number of steps and the final height.
We classify those paths in 9 different categories:

(i) the empty path,
(ii) paths starting with an F1, followed by any path of the class,
(iii) the path F2,
(iv) paths starting with F2F1, followed by any path of the class,
(v) the path U ,
(vi) paths starting with UD, followed by a path of the class not starting with F2,
(vii) paths starting with UF1, followed by any path of the class,
(viii) paths starting with UF1D, followed by a path of the class not starting with F2,
(ix) paths starting with UF1, followed by any path of the class ending at height 0, followed

by F1D, followed by any path of the class not starting with F2.

This decomposition gives the following equation:

A(x, y) = 1 + xA(x, y) + x+ x2A(x, y) + xy + x2(A(x, y)− x− x2A(x, y))

+ x2yA(x, y) + x3(A(x, y)− x− x2A(x, y))

+ x4A(x, 0)(A(x, y)− x− x2A(x, y)).

By specializing y = 0 and solving this equation, we find

A(x, 0) =
1− x− x2 − 2x3 −

√
x4 − 2x3 − x2 − 2x+ 1

2x4
.

By plugging this expression in the previous equation we can then solve for A(x, y), which
gives

A(x, y) =
x
√
x4 − 2x3 − x2 − 2x+ 1 + 2− x3 + x2 + (2y + 1)x

(1− x2)
√
x4 − 2x3 − x2 − 2x+ 1 + 1 + x4 − x3 − 2(y + 1)x2 − x

.

Then we obtain J(x, y) from A(x, y) with the shift J(x, y) = 1 + xA(x, y). □

The first terms of the series expansion of J(x, 1) are

1 + x+ 3x2 + 6x3 + 15x4 + 35x5 + 86x6 + 210x7 + 520x8 + 1292x9 +O(x10),
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and the sequence of coefficients does not appear in [30].

4.3. In the lattice Fp
n, p ≥ 3. The following theorem gives a generalization of Theorem 4.6,

providing a bijection between intervals in Fp
n for any p ≥ 3, and some bicolored Motzkin

paths. However, obtaining a count of those paths seems challenging, because of the expo-
nential number of forbidden patterns.

Theorem 4.8. There is a bijection between intervals in Fp
n and bicolored Motzkin paths of

length n− 1 and avoiding the 2p+1 − 1 patterns of the set {F2, U}p ∪ {F2, D}p.

Proof. An interval [P,Q] in Fp
n can be generated with similar rules as in Theorem 4.4. How-

ever we need to be careful not creating an occurrence of Dp+1 in P or Q. Such an occurrence
appears in P if and only if, with the notation of Fact 4.2, we insert p times consecutively
the factor UD at height i (and similarly with Q at height j). The steps corresponding to an
insertion at height i in P (resp. j in Q) are F2 and D (resp. F2 and U). The theorem then
follows. □

5. Bijections with other combinatorial objects

The generalized Fibonacci numbers count a variety of combinatorial objects, so with no
surprise, there are a lot of bijections between Fp

n and other objects. In this section we present
some of them, with well-known objects, and we show how the lattice structure is conveyed.
As a consequence, Theorems 4.5 and 4.7 also give the enumeration of the intervals viewed
as in Propositions 5.1, 5.2 and 5.5, for p ∈ {2,∞}.

5.1. Catalan words. A length n Catalan word is a word w1 . . . wn over the set of non-
negative integers, with w1 = 0 and 0 ≤ wi ≤ wi−1 + 1 for i = 2, 3, . . . , n. We present
a bijection between Fp

n and the set Cp
n of length n non-decreasing Catalan words avoiding

p + 1 consecutive occurrences of the same letter. Similarly, F∞
n is in bijection with the

set C∞
n of length n and non-decreasing Catalan words. Let P be a Dyck path in Fp

n .
Label the n down steps of P from 1 to n and from right to left. For i = 1, . . . , n, let wi

be the number of up steps in P that are at the right of the down step number i. We set
w(P ) = w1 . . . wn. Since P avoids DUU , w(P ) is a Catalan word. It is clearly non-decreasing
by construction, and since P avoids Dp+1, w(P ) does not have p+1 consecutive occurrences
of the same letter. Conversely, let w = w1 . . . wn ∈ Cp

n. Let k := wn be the greatest letter
in w, and for i = 0, . . . , k, let ai be the number of occurrences of the letter i in w. Let
P = Un−kDakUDak−1 . . . UDa1UDa0 . It is easy to check that w(P ) = w, P avoids DUU ,
and since ai ≤ p for 0 ≤ i ≤ k, P avoids Dp+1, thus P ∈ Fp

n. Then, w is a bijection between
Fp

n and Cp
n (for p ≥ 2 and p = ∞), see Figure 8.

As a consequence, Fp
n induces a lattice structure on Cp

n, the cover relation being

v ⋖ w ⇐⇒ there exists i such that vi = wi + 1, and vj = wj for j ̸= i.

See Figure 11 for an illustration. We then deduce the following proposition.

Proposition 5.1. Let v, w ∈ Cp
n. Then [v, w] is an interval in Fp

n if and only if for all
1 ≤ i ≤ n, wi ≤ vi.
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2 1

1

1 0

0

0

Figure 8. The path P = U5D(UD3)2 ∈ F∞
7 is associated with the Catalan

word w(P ) = 0001112.

5.2. Compositions. In this section we present a bijection between the elements of Fp
n

and the compositions of n with parts in [1, p], and between F∞
n and all compositions

of n. This one is quite natural, since any path P ∈ Fp
n can be uniquely written P =

Un−k+1DλkUDλk−1 . . . UDλ1 with λ1, . . . , λk ∈ [1, p], and so λ(P ) := (λ1, . . . , λk) is a compo-
sition of n with parts in [1, p]. We then easily see that P 7→ λ(P ) is a bijection, see Figure 9.
Thus Fp

n induces a lattice structure on the compositions of n with parts in [1, p], the cover
relation being

(λ1, . . . , λk)⋖ (µ1, . . . , µℓ) ⇐⇒


k = ℓ, and there exists i ∈ [2, k] such that

λi > 1, (µi−1, µi) = (λi−1 + 1, λi − 1),
and µj = λj for j ̸∈ {i− 1, i}, or

ℓ = k − 1, λk = 1, µℓ = λk−1 + 1,
and µj = λj for j ∈ [1, k − 2].

See Figure 11 for an illustration. From this we deduce the following proposition.

1

3

3

Figure 9. The path P = U5D(UD3)2 ∈ F∞
7 is associated with the

composition λ(P ) = (3, 3, 1).

Proposition 5.2. The order induced by Fp
n on the compositions of n with parts in [1, p]

is known as the dominance order [11], defined by λ ≤ µ if and only if for all k we have∑k
i=1 λi ≤

∑k
i=1 µi.

5.3. Power set of [1, n− 1]. Here we present a bijection between Fp
n, p ∈ N≥2 ∪ {∞}, and

the subsets of [1, n− 1] having no p consecutive elements (when p = ∞ it is just the whole
powerset). Let P ∈ Fp

n be a Dyck path. We write P = U iDQ with i the length of the first
run of U ’s in P , and Q a path with n− 1 D’s and n− i U ’s, avoiding UU . Then, label the
D’s of Q from 1 to n− 1 and from left to right. Let A(P ) ⊆ [1, n− 1] be the set of labels of
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the D’s that are not preceded by a U , see Figure 10 for an example. It is easy to check that
if P ∈ Fp

n then A(P ) does not have p consecutive elements.

1

2

3 4

5

6

Figure 10. The path P = U5D(UD3)2 ∈ F∞
7 is associated with the subset

A(P ) = {2, 3, 5, 6} ⊆ {1, . . . , 6}.

Conversely, if A ⊆ [1, n−1], we build the following path: we start with U |A|+1D, and then
we add a path Q = Q1Q2 . . . Qn−1 so that Qi = D if i ∈ A, and Qi = UD if i ̸∈ A. If A
does not contain p consecutive elements, then it is easy to check that this path belongs to
Fp

n. We then obtain a lattice on the subsets of [1, n− 1] not having p consecutive elements
(all the subsets when p = ∞) with the following covering relation (see Figure 11):

A⋖B ⇐⇒
{

1 ̸∈ A and B = A ∪ {1}, or
there exists a unique x ∈ A such that B = {x+ 1} ∪ A\{x}.

Remark 5.3. In this setting, it is easy to see that the lattice is graded, the rank function ρ
being defined by ρ(A) =

∑
x∈A x. When p = ∞, the maximal element is {1, 2, . . . , n− 1}, so

the rank of F∞
n is n(n− 1)/2. When p ∈ N≥2, the maximal element is {1, 2, . . . , n− 1}\{n−

p, n− 2p, . . . , n−
⌊
n−1
p

⌋
p}, so the rank of Fp

n is

ρ(Fp
n) =

n(n− 1)

2
−
⌊
n− 1

p

⌋
·

n−
p
(⌊

n−1
p

⌋
+ 1
)

2

 .

For a set A ⊆ [1, n− 1], we denote by Ac = [1, n− 1]\A its complement.

Theorem 5.4. For all A,B ∈ F∞
n , A⋖B if and only if Bc⋖Ac. So complement is a reverse

ordering involution on F∞
n .

Proof. B = A ∪ {1} if and only if Ac = Bc ∪ {1}, and B = {x + 1} ∪ A\{x} if and only if
Ac = {x+ 1} ∪Bc\{x}. □

Proposition 5.5. If A,B ⊆ [1, n− 1], then [A,B] is an interval in Fp
n if and only if A = B

or

(i)
∑

x∈A x <
∑

x∈B x,
(ii) |A| ≤ |B|,
(iii) |A\{1}| ≤ |B\{1}|, and
(iv) if A = {x1 > x2 > · · · > x|A|} and B = {y1 > y2 > · · · > y|B|}, then (x1, . . . , x|A|) ≤lex

(y1, . . . , y|A|), where ≤lex is the lexicographic order.
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Proof. Let P,Q ∈ Fp
n such that [P,Q] is an interval in Fp

n, with P ̸= Q. Let us prove that
[A(P ), A(Q)] satisfies (i-iv). Since A(P ) ̸= A(Q), we necessarily have ρ(A(P )) < ρ(A(Q)),
hence (i). Since P lies below Q, the length of its first run of U ’s is lower that the one of Q,
hence (ii). Now that we have (ii), the only possibility for (iii) to be false is that |A(P )| =
|A(Q)|, 1 ∈ A(Q) and 1 ̸∈ A(P ). But this would mean that P (resp. Q) has the prefix
UkDU (resp. UkD2) for some k, a contradiction to P ≤ Q. Let A(P ) = {x1 > . . . > xk} and
A(Q) = {y1 > . . . > yl}, with l ≥ k. Let i be such that x1 = y1, . . . , xi−1 = yi−1 and xi ̸= yi.
Suppose that xi > yi. This means that there exists a path S such that P has the suffix
D2S, and Q has the suffix UDS, again a contradiction to P ≤ Q, hence (iv). Conversely,
with similar arguments as before, we indeed have that if A(P ) and A(Q) satisfy (i-iv), then
P < Q. □

{1, 2, 3, 4}

{2, 3, 4}

{1, 3, 4}

{1, 2, 4} {3, 4}

{1, 2, 3} {2, 4}

{2, 3} {1, 4}

{1, 3} {4}

{1, 2} {3}

{2}

{1}

∅

00000

00001

00011

00111 00012

01111 00112

01112 00122

01122 00123

01222 01123

01223

01233

01234

(5)

(4, 1)

(3, 2)

(2, 3) (3, 1, 1)

(1, 4) (2, 2, 1)

(1, 3, 1) (2, 1, 2)

(1, 2, 2) (2, 1, 1, 1)

(1, 1, 3) (1, 2, 1, 1)

(1, 1, 2, 1)

(1, 1, 1, 2)

(1, 1, 1, 1, 1)

Figure 11. The lattice F∞
5 on the power set of {1, 2, 3, 4} (left), the

non-decreasing Catalan words of length 5 (center) and the compositions of 5
(right).
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