
BIJECTIONS BETWEEN DIRECTED-COLUMN CONVEX
POLYOMINOES AND RESTRICTED COMPOSITIONS
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Abstract. A bijection is given between the set of directed column-convex polyominoes
on triangular and honeycomb lattices of area n and some families of restricted composi-
tions. This is an analogous result to one given by Deutsch and Prodinger for polyominoes
over square lattices. As a byproduct, we deduce new close forms for the number of hexag-
onal and triangular directed column-convex polyominoes of area n with k columns.

1. Introduction

A polyomino is a connected set of n unit cells on a lattice structure. In the literature,
polyominoes are widely studied in the domain of combinatorics. Generally, the studies
consist in the enumeration of some special classes of polyominoes with respect to the type
of lattice and some given values of parameters (area, height, number of columns, perimeter,
...). We refer to the survey of Viennot [15], the book edited by Guttmann [12], and the
papers [2, 3, 4, 5, 6, 7]. In this paper, we will consider polyominoes in the square (resp.
triangular, resp. honeycomb) lattice, where the unit cell is a square (resp. hexagon, resp.
triangle). See Figure 1 for an illustration of these lattices and the associated unit cells.
Notice that the unit cell for the honeycomb lattice is an equilateral triangle that can be
oriented in two ways (triangle pointing upwards and downwards).

Figure 1. Square, triangular and honeycomb lattices, and the associated
unit cells (square, hexagon, and triangle). For the honeycomb lattice, there
are two kinds of cells: triangles pointing upwards and downwards.

For each lattice, we consider a set of directions (North/East for the square lattice,
North/North-East/East for the triangular and honeycomb lattices). A polyomino P is
directed if there exists a cell S, called the source of P , such that any cell C of P can
be obtained by repeatedly joining cells from C using the predetermined set of directions.
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A polyomino P is said column convex when any column of P is a connected set, where a
column of P is defined as the set of cells of P whose centers intersect a fixed line L (vertical
line for the square and triangular lattices, and oblique lines of slope π

3
for the honeycomb

lattice).

Definition 1.1. A dcc-polyomino consists of a set of unit cells satisfying the three key
properties: the set of cells is connected, directed, and column convex.

We refer to Figure 2 for three examples of dcc-polyominoes in the three kinds of lattices.
The source cell is located at the bottom left corner and each dcc-polyomino is constructed
by attaching unit cells in the allowed directions of the lattice, by taking into account the
property of directed column convexity.

Let P be a dcc-polyomino. The area of P , denoted by a(P ), is the number of unit cells
of P . We denote the number of columns of P by c(P ). The height h(P ) of P is the length
(number of cells) of a longest path from the source of P to any of the cells in P .

S S S

Figure 2. From left to right, a square, a hexagonal, and a triangular dcc-
polyominoes of areas 21, 18 and 37, respectively. All these polyominoes have
9 columns.

For each kind of lattice described above, Barcucci et al. [3] gave multivariate generating
functions for the number of dcc-polyominoes with respect to the area, the number of
columns, and the height. The method used consists in giving a recursive description of the
set of dcc-polyominoes which induces a functional equation for the multivariate generating
function. They also deduce (for each lattice) the average height of dcc-polyominoes and
its asymptotic behaviors when the area tends to infinity. In a second study [2], Barcucci,
Pinzani, and Sprugnoli use a traditional recurrence relation approach in order to count the
number of dcc-polyominoes in the square lattice with area n and with k columns. They
prove that this number is given by the binomial coeficcient(

n+ k − 2

n− k

)
,

and they deduce that the number of square dcc-polyominoes of area n is the Fibonacci
number F2n+1, where F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. Moreover, Deutsch
and Prodinger [5] exhibit a constructive bijection between these polyominoes of area n and
ordered trees of height at most three with n edges, that transports the number of columns
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into one plus the number of nodes at level 2. They also give a one-to-one correspondence
with nondecreasing Dyck paths that transports the number of columns into the number of
peaks, knowing that a nondecreasing Dyck paths is a Dyck path having a nondecreasing
sequence of the heights of its valleys (see [1] for an introduction of nondecreasing paths
and [9, 10] for some generalizations of these paths).

Motivation: To our knowledge, the literature does not mention any one-to-one cor-
respondence between hexagonal (resp. triangular) dcc-polyominoes of a given area with
other classical combinatorial objects so that the number of columns is transported into a
natural statistic. The objective of this note is to remedy this shortcoming by exhibiting
a unified combinatorial class of objects which is in bijection with the other two kinds of
dcc-polyominoes (hexagonal and triangular). As a byproduct, we will deduce new close
forms for the number of these dcc-polyominoes of area n with k columns.

Outline of the paper: In Section 2, we exhibit a one-to-one correspondence between
hexagonal dcc-polyominoes of area n with k columns and compositions of the integer n−1
in which three different types of ones are allowed 1N , 1D, and 1E, and such that k−1 parts
are different from 1N . By counting these compositions and using this bijection, we deduce a
new close form for the number pn,k of hexagonal dcc-polyominoes of area n with k column.
We end the section by proving that the matrix (pn,k)n,k≥0 is a Riordan array. We also give
a one-to-one correspondence between these polyominoes and the set of order-consecutive
partitions of {1, 2, . . . , n} that transports the number of columns into the number of parts
in the partition. Section 3 presents a similar study for triangular dcc-polyominoes in the
honeycomb lattice. We exhibit a bijection between these polyominoes of area n with k
columns and compositions of the integer n−1 in which only parts of the form 2i, i ≥ 0, are
allowed, and such that k − 1 parts are different from 1. As previous, this bijection allows
us to deduce a new close form for the number tn,k of triangular dcc-polyominoes of area n
with k column. We also give a one-to-one correspondence between these polyominoes and
the set of consecutive partitions of {1, 2, . . . , n} that transports the number of columns
into the number of parts with at least two elements.

We end this section by fixing some definitions about compositions of an integer n. Also,
we give some notations used in this note. A composition of a positive integer n is a sequence
of positive integers σ = (σ1, σ2, . . . , σℓ) such that σ1 + σ2 + · · · + σℓ = n. The summands
σi are called parts of the composition and n is referred to the weight of σ. For example,
the compositions of 4 are

(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1).

It is well known [18] that the number of compositions of n with k parts is
(
n−1
k−1

)
, and

the total number of compositions of n is 2n−1. Throughout this note, we will use the
following notations. The composition of the integer 0 will be denoted (), and if c =
(m1,m2, . . . ,mk) is a composition of n ≥ 0 with k parts, then c corresponds to the sequence
m1,m2, . . . ,mk, and for an integer a ≥ 1, the notation (a, c̄) corresponds to the composition
(a,m1,m2, . . . ,mk) of the integer n+ a. In particular, if c = () then we have (a, c) = (a).
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2. Hexagonal dcc-polyominoes

Barcucci et al. [3] proved that the number of hexagonal dcc-polyominoes having area n,
denoted by Hn, is equal to

Hn =
1

4
(θn1 + θn2 ) =

n∑
k=0

(
n

2k

)
2n−k−1 (n ≥ 1),

where θ1 = 2 +
√
2 and θ2 = 2 −

√
2. Moreover, the authors give the generating function

of the sequence

H(x) :=
∑
n≥1

Hnx
n =

x(1− x)

1− 4x+ 2x2
.

The first few values for n ≥ 1 of Hn are

1, 3, 10, 34, 116, 396, 1352, 4616, 15760, . . .

Notice that Hn corresponds with the sequence A007052 in [17]. Among the objects counted
by this sequence are the compositions of an integer in which there are three different types of
ones, denoted by 1N , 1D, and 1E, respectively. Let an be the number of these compositions
of weight n. For example, a2 = 10 and the corresponding compositions are

(1N , 1N), (1N , 1D), (1N , 1E), (1D, 1N), (1D, 1D), (1D, 1E),

(1E, 1N), (1E, 1D), (1E, 1E), (2).

Theorem 2.1. For all n ≥ 0, we have the equality an = Hn+1.

Proof. Let C denote the family (combinatorial class) of compositions in which three different
types of ones are allowed, then we can write the symbolic equation:

C = SEQ({1N , 1D, 1E, 2, 3, 4, . . . }),
where SEQ denotes the sequence combinatorial class (the previous equation simply rephrases
that every element of C is a sequence whose terms belong to {1N , 1D, 1E, 2, 3, 4, . . . }). For
a general background about the symbolic method see the book [8]. In terms of generating
functions, the last equation translates into

A(x) :=
∑
n≥0

anx
n =

1

1−
(
3x+

∑
ℓ≥2 x

ℓ
) =

1

1− 3x−2x2

1−x

=
1− x

1− 4x+ 2x2
,

and we obtain that H(x) = xA(x), which means that an = Hn+1. □

As already mentioned in [3], any hexagonal dcc-polyomino P of area n ≥ 1 can be
uniquely decomposed in one of the following forms (see Figure 3):

(i) P consists of one hexagonal cell;
(ii) P is obtained by attaching a dcc-polyomino Q of area n− 1 to the north side of a

hexagonal cell which becomes the source of P ;
(iii) P is obtained by attaching a dcc-polyomino Q of area n− 1 to the north-east side

of a hexagonal cell which becomes the source of P ;

http://oeis.org/A007052
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(iv) P is obtained by attaching a column C of k ≥ 1 unit cells so that the most southern
cell of C is attached (by its east side) to a dcc-polyomino Q of area n− k.

(i) (ii)

Q

(iii)

Q

(iv)

Q

Figure 3. Recursive decomposition of a hexagonal dcc-polyomino P .

According to this decomposition, we define recursively a map ϕ from the set of hexag-
onal dcc-polyominoes of area n + 1 and the set C3

n of compositions of n having parts in
{1N , 1D, 1E, 2, 3, 4, . . . } (the part one can be take three colors).

- If P belongs to the case (i), then we set ϕ(P ) = () (empty composition);

- If P belongs to the case (ii), then we set ϕ(P ) = (1N , ϕ(Q));

- If P belongs to the case (iii), then we set ϕ(P ) = (1D, ϕ(Q));
- If P belongs to the case (iv), then we distinguish two cases:

- If k = 1 (k is the number of cells in the first column of P ), then we set

ϕ(P ) = (1E, ϕ(Q)) ;

- Otherwise we have k ≥ 2, and we set ϕ(P ) = (k, ϕ(Q)).

See Figure 4 for an illustration of the map ϕ on a hexagonal dcc-polyomino.

−→ (1E, 1N , 1N , 3, 1N , 1D, 1D, 2, 1N , 1E, 1E, 1N , 1D, 1N)

Figure 4. A hexagonal dcc-polyomino of area 18 with 9 columns and its im-
age by ϕ, which is a composition of 17 with parts in {1N , 1D, 1E, 2, 3, 4, . . . }.
The number of parts different from 1N equals 8, which also is the number of
columns minus one.

Theorem 2.2. For all n ≥ 0, ϕ is a bijection between the set of dcc-polyominoes of area
n + 1 and the set of compositions of n where the parts belong to {1N , 1D, 1E, 2, 3, 4, . . . }.
Moreover, ϕ transports the number of columns minus one into the number of parts different
from 1N in the composition.

Proof. We can easily observe that the image by ϕ of a hexagonal dcc-polymomino of area
n+ 1 is a composition in C3

n. Moreover, if this polyomino P has k+ 1 columns, then ϕ(P )
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has exactly k parts lying in {1D, 1E, 2, 3, 4, . . . }. Conversely, any composition in C3
n with k

parts different from 1N can be uniquely decomposed into one of the following forms:

(i) the empty composition () whenever n = 0;
(ii) (1N , c1, . . . , cℓ), ℓ ≥ 0, where (c1, . . . , cℓ) ∈ C3

n−1 with k parts different from 1N ;
(iii) (1D, c1, . . . , cℓ), ℓ ≥ 0, where (c1, . . . , cℓ) ∈ C3

n−1 with k − 1 parts different from 1N ;
(iva) (1E, c1, . . . , cℓ), ℓ ≥ 0, where (c1, . . . , cℓ) ∈ C3

n−1 with k − 1 parts different from 1N ;
(ivb) (a, c1, . . . , cℓ), ℓ ≥ 0, where a ≥ 2 and (c1, . . . , cℓ) ∈ C3

n−a with k − 1 parts different
from 1N .

Therefore, the set of hexagonal dcc-polyominoes of area n+1 and the set C3
n have the same

recursive description, which ensures that ϕ is a bijection that transports the number of
columns minus one into the number of parts different from 1N . □

Let pn,k be the number of hexagonal dcc-polyominoes of area n with exactly k columns.
Notice that an immediate consequence of the recursive decomposition of a dcc-polyomino
is the recursive formula pn,1 = 1 for n ≥ 1, and for n ≥ 2, k ≥ 2,

pn,k = pn−1,k + pn−1,k−1 +
n−1∑
ℓ=1

pn−ℓ,k−1.

As a byproduct of the bijection ϕ given in Theorem 2.2 we deduce a close form for pn,k.

Theorem 2.3. If n ≥ k ≥ 2, then

pn,k =
k−1∑
i=0

(
k − 1

i

)(
n+ i− 1

n− k

)
.

Proof. Due to the bijection ϕ defined above, pn,k corresponds to the number of compositions
of n− 1 with parts in {1N , 1D, 1E, 2, 3, 4, . . . }, and where exactly k − 1 parts are different
from 1N . Such a composition c can be uniquely obtained from a composition of r, k− 1 ≤
r ≤ n − 1, with k − 1 parts and where all parts lie in {1D, 1E, 2, 3, 4, . . . }, by adding
(n− 1− r) parts 1N in the right places. Since there are

(
n−r−1+k−1

k−1

)
=
(
n−r+k−2

k−1

)
ways for

adding these parts into k places (this is the number of ways to choose k − 1 parts among
n− 1− r + k − 1 parts), we obtain

pn,k =
n−1∑

r=k−1

(
n− 2− r + k

k − 1

)
ar,k−1,

where ar,k−1 is the number of compositions of r with (k−1) parts lying into {1D, 1E, 2, 3, 4, . . . }.
From the definition of the sequence ar,s and for a given s, we obtain the following

expression for its generating function:∑
r≥0

ar,sx
r = (2x+ x2 + x3 + · · ·)s = xs

(
1 +

1

1− x

)s

= xs
s∑

i=0

(
s

i

)
1

(1− x)i
.
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From the equality 1/(1− x)m+1 =
∑∞

ℓ=0

(
m+ℓ
ℓ

)
xℓ, we have∑

r≥0

ar,sx
r = xs +

s∑
i=1

(
s

i

) ∞∑
ℓ=0

(
i+ ℓ− 1

ℓ

)
xℓ+s = xs +

s∑
i=1

∞∑
ℓ=0

(
s

i

)(
i+ ℓ− 1

ℓ

)
xℓ+s.

By setting ℓ = 0, the coefficient of xs in this expression is

as,s = 1 +
s∑

i=1

(
s

i

)(
i− 1

0

)
= 1 +

s∑
i=1

(
s

i

)
= 2s.

For r > s, setting ℓ = r − s yields

ar,s =
s∑

i=1

(
s

i

)(
i+ r − s− 1

r − s

)
=

s∑
i=1

(
s

i

)(
r − s+ i− 1

r − s

)
.

Therefore, by considering the previous value of ar,s for s = k − 1, we obtain

pn,k = ak−1,k−1

(
n− 1

k − 1

)
+

n−1∑
j=k

(
n− 2− j + k

k − 1

)
aj,k−1

= 2k−1

(
n− 1

k − 1

)
+

n−1∑
j=k

(
n− 2− j + k

k − 1

) k−1∑
i=1

(
k − 1

i

)(
j − k + i

j − k + 1

)

= 2k−1

(
n− 1

k − 1

)
+

k−1∑
i=1

n−1∑
j=k

(
n− 2− j + k

k − 1

)(
k − 1

i

)(
j − k + i

j − k + 1

)

= 2k−1

(
n− 1

k − 1

)
+

k−1∑
i=1

(
k − 1

i

) n−1−k∑
j=0

(
j + i

j + 1

)(
n− j − 2

k − 1

)

= 2k−1

(
n− 1

k − 1

)
+

k−1∑
i=1

(
k − 1

i

) n−k∑
j=1

(
(i− 1) + j

j

)(
n− j − 1

n− j − k

)

= 2k−1

(
n− 1

k − 1

)
+

k−1∑
i=1

(
k − 1

i

) n−k∑
j=1

(
(i− 1) + j

j

)(
(k − 1) + (n− k − j)

n− j − k

)
.

The last sum can be simplified by means of the following identity [11, (identity (3.2)]

m∑
j=0

(
x+ j

j

)(
y +m− j

m− j

)
=

(
x+ y +m+ 1

m

)
by setting x = i− 1, y = k − 1, and m = n− k. Indeed,

n−k∑
j=1

(
(i− 1) + j

j

)(
(k − 1) + (n− k − j)

n− j − k

)
=

(
n+ i− 1

n− k

)
−
(
n− 1

n− k

)
.
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Therefore,

pn,k = 2k−1

(
n− 1

k − 1

)
+

k−1∑
i=1

(
k − 1

i

)[(
n+ i− 1

n− k

)
−
(
n− 1

n− k

)]

= 2k−1

(
n− 1

k − 1

)
−
(
n− 1

n− k

) k−1∑
i=1

(
k − 1

i

)
+

k−1∑
i=1

(
k − 1

i

)(
n+ i− 1

n− k

)

= 2k−1

(
n− 1

k − 1

)
−
(
n− 1

n− k

)
(2k−1 − 1) +

k−1∑
i=1

(
k − 1

i

)(
n+ i− 1

n− k

)

=
k−1∑
i=0

(
k − 1

i

)(
n+ i− 1

n− k

)
. □

Using the same decomposition as previously for defining the bijection with compositions
having parts into {1N , 1D, 1E, 2, 3, 4, . . . }, we can easily exhibit another bijection between
dcc-polyominoes of area n with k columns and order-consecutive partitions of {1, 2, . . . , n}
with k parts, knowing that an ordered partition of {1, 2, . . . , n} with p parts is a p-uplet

(S1, S2, . . . , Sp) of subsets such that Si ∩ Sj = ∅ if i ̸= j, and
p⋃

i=1

Si = {1, 2, . . . , n}. An

order-consecutive partition of {1, 2, . . . , n} is an ordered partition satisfying the property:

for j = 1, . . . , p,
j⋃

i=1

Si is an interval.

So, we define recursively a map ψ from the set of hexagonal polyominoes of area n + 1
and the set OCPn of order-consecutive partitions of {1, 2, . . . , n}.

- If P belongs to the case (i), then we set ψ(P ) = {1};
- If P belongs to the case (ii), then ψ(P ) is obtained from ψ(Q) by inserting n in
the last part; for instance, if f(Q) = {3, 4}{2}{1}, then f(P ) = {3, 4}{2}{1, 5};

- If P belongs to the case (iii), then ψ(P ) is obtained from ψ(Q) by adding the part
{n} on the right; for instance, if f(Q) = {3, 4}{2}{1}, then f(P ) = {3, 4}{2}{1}{5};

- If P belongs to the case (iv), then ψ(P ) is obtained from ψ(Q) by increasing by
k ≥ 1 all values in ψ(Q), and by adding the part {1, 2, . . . , k} on the right; for
instance, if f(Q) = {3, 4}{2}{1} and k = 4, then f(P ) = {7, 8}{6}{5}{1, 2, 3, 4}.

With a same argument as the proof of Theorem 2.2, we can easily prove that ψ is a
bijection that transports the number of columns into the number of parts. The image of
the polyomino represented in Figure 4 is

{9}{8, 10, 11}{5, 6, 7, 12}{13}{14}{3, 4, 15}{2}{1, 16}{17, 18}.

As a consequence of this bijection and using Theorem 2.3 and Theorem 6 in [13], we
deduce another close form for pn,k.
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Corollary 2.4. The number of hexagonal dcc-polyominoes of area n with k columns is

pn,k =
k−1∑
i=0

(−1)k−1−i

(
k − 1

i

)(
2k − i− 2

i

)
.

2.1. A relation with Riordan arrays. Let P be the matrix defined by P = [pn,k]n,k≥1.
The first few rows of the matrix P are

P =



1 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
1 5 4 0 0 0 0 0
1 9 16 8 0 0 0 0
1 14 41 44 16 0 0 0
1 20 85 146 112 32 0 0
1 27 155 377 456 272 64 0
1 35 259 833 1408 1312 640 128
...

...
...

...


.

The matrix P correspond to the array A056242 and it is a Riordan array.
We now give a short background for Riordan arrays [16]. An infinite lower triangu-

lar matrix is called a Riordan array if its kth column satisfies the generating function
g(x) (f(x))k for k ≥ 0, where g(x) and f(x) are formal power series with g(0) ̸= 0, f(0) = 0
and f ′(0) ̸= 0 (where f ′(x) is the formal derivative of f(x)). The matrix corresponding
to the pair f(x), g(x) is denoted by (g(x), f(x)). If we multiply (g, f) by a column vector
(c0, c1, . . . )

T with the generating function h(x), then the resulting column vector has a
generating function gh(f). This property is known as the fundamental theorem of Riordan
arrays or summation property.

The product of two Riordan arrays (g(x), f(x)) and (h(x), l(x)) is defined by

(g(x), f(x)) ∗ (h(x), l(x)) = (g(x)h (f(x)) , l (f(x))) .

The set of all Riordan arrays is a group under the operator “∗ ” [16]. The identity element
is I = (1, x), and the inverse of (g(x), f(x)) is

(1) (g(x), f(x))−1 =
(
1/
(
g ◦ f

)
(x), f(x)

)
,

where f(x) is the compositional inverse of f(x).
Even though rows and columns of Riordan arrays are indexed starting at 0, the elements

of P are shifted so that the entry in row 0 and column 0 is in fact p1,1.

Theorem 2.5. The matrix P is the Riordan array(
1

1− x
,
x(2− x)

(1− x)2

)
.

Proof. Due to the recursive decomposition of a hexagonal dcc-polyomino (see Figure 3), we
deduce that the bivariate generating function H(u, x), where the coefficient of xnuk is the

http://oeis.org/A056242
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number of hexagonal dcc-polyominoes of area n and with k columns, we have the following
functional equation:

H(u, x) = xu+ xH(u, x) + uxH(u, x) +
ux

1− x
H(u, x).

We deduce

H(u, x) =
ux (1− x)

ux2 − 2ux+ x2 − 2x+ 1
.

A simple calculation allows us to check that

H(u, x) =
x

1− x

(
1

1− xu(2−x)
x2−2x+1

)
,

which ensures that the matrix P is the Riordan array
(

1
1−x

, x(2−x)
(1−x)2

)
. □

Every element dn+1,k+1 of a Riordan array (not belonging to row 0 or column 0) can be
expressed as a linear combination of the elements in the preceding row. The coefficients of
the linear combination are called the A-sequence. Additionally, the elements in column 0,
except for the element d0,0, can also be expressed as a linear combination of the preceding
row. In this case the coefficients of the linear combination are called the Z-sequence [14].
Therefore, the A-sequence, Z-sequence, and the element d0,0 give a complete characteriza-
tion of a Riordan array. Summarizing these comments: let n, k ∈ Z≥0. An infinite lower
triangular array D = [dn,k] is a Riordan array if and only if d0,0 ̸= 0 and there are two
sequences A = (a0 ̸= 0, a1, a2, . . . ) and Z = (z0, z1, z2, . . . ) such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · ,
dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · .

Moreover, if D = (g(x), f(x)) is a Riordan array with inverse D−1 = (d(x), h(x)), then the
A-sequence and Z-sequence of D are given by

A(x) =
x

h(x)
; Z(x) =

1

h(x)
(1− d0,0d(x)) .

Since the inverse Riordan array P is given by

P−1 =

(
1√
1 + x

,
1 + x−

√
1 + x

1 + x

)
,

we have the generating function of the A-sequence and Z-sequence of P . Thus,

A(x) = 1 + x+
√
1 + x = 1 + x+

∑
n≥2

1

1− 2n

(
2n

n

)(
−1

4

)n

xn,

Z(x) = 1.
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Therefore, we have the following curious relation. If n, k ≥ 1, then

pn+1,k+1 = 2pn,k +
3

2
pn,k+1 +

∑
ℓ≥2

1

1− 2ℓ

(
2ℓ

ℓ

)(
−1

4

)ℓ

pn,k+ℓ

= 2pn,k +
3

2
pn,k+1 +

∑
ℓ≥2

Cℓ−1
(−1)ℓ−1

22ℓ−1
pn,k+ℓ,

where Cℓ is the ℓ-th Catalan number.

3. Triangular dcc-polyominoes

Let T be the set of triangular dcc-polyominoes. Barcucci et al. [3] proved that the
generating function for the number of triangular dcc-polyominoes having area n, denoted
by Tn, is given by

T (x) :=
∑
n≥1

Tnx
n =

x(1− x2)

1− x− 2x2 + x3
.

The first few values for n ≥ 1 of Tn are

1, 1, 2, 3, 6, 10, 19, 33, 61, 108, . . .

Notice that Tn corresponds with the sequence A028495 in [17]. From the expression of
T (x) follows that Tn satisfies the recurrence relation

Tn = Tn−1 + 2Tn−2 − Tn−3 (n ≥ 4),

with initial conditions T1 = 1, T2 = 1, and T3 = 2. This relation can be applied repeatedly
in the following manner:

Tn − Tn−1 = 2Tn−2 − Tn−3

= Tn−2 + (Tn−2 − Tn−3)

= Tn−2 + 2Tn−4 − Tn−5

= Tn−2 + Tn−4 + (Tn−4 − Tn−5)

...

=

{
Tn−2 + Tn−4 + · · ·+ T2 + T0, if n is even;

Tn−2 + Tn−4 + · · ·+ T3 + T1, if n is odd;

This can be rewritten as

Tn = Tn−1 +

⌊n/2⌋∑
k=1

Tn−2k.

The sequence (Tn)n≥0 enumerates a variety of combinatorial objects, such as all paths
of length of n on the path graph P6 and the compositions of n whose parts belong to the
set {1, 2, 4, 6, 8, . . . }. Let us establish the relation between triangular dcc-polyominoes and

http://oeis.org/A028495
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this family of compositions. Let bn be the number of compositions of n into parts from
{1, 2, 4, 6, 8, . . . }.

Proposition 3.1. For all n ≥ 0, we have the equality bn = Tn+1.

Proof. We will prove this statement using the symbolic method. Let B be the family of all
compositions whose parts belong to the set {1, 2, 4, 6, 8, . . . }. Thus B = SEQ({1, 2, 4, 6, 8, . . . }).
In terms of generating functions, the last equation translates into

B(x) :=
∑
n≥1

bnx
n =

1

1−
(
x+

∑
ℓ≥1 x

2ℓ
) =

1

1− x− x2

1−x2

=
1− x2

1− x− 2x2 + x3
.

Therefore, we obtain T (x) = xB(x), which means that bn = Tn+1. □

As already mentioned in [3], any triangular dcc-polyomino P of area n ≥ 1 can be
uniquely decomposed in one of the following forms (see Figure 5):

(i) P consists of one triangular cell (a triangle pointing upwards);
(ii) P consists of two triangular cells (two triangles pointing upwards and downwards);
(iii) P is obtained by attaching a dcc-polyomino Q of area n − 2 to the north side of

two triangular cells where the leftmost cell becomes the source of P ;
(iv) P is obtained by attaching a column C of k ≥ 2 triangular dcc-polyominoes so

that the most southern down-cell of C is attached (by its east side) to a triangular
dcc-polyomino Q of area n− k.

(i) (ii) (iii)

Q

(iv)
Q

Figure 5. Recursive decomposition of a triangular dcc-polyomino P .

According to this decomposition, we define recursively a map χ from the set of triangular
dcc-polyominoes of area n + 1 and the set CPn of compositions of n having parts in
{1, 2, 4, 6, 8, . . .} .

- If P belongs to the case (i), then we set χ(P ) = () (empty composition);
- If P belongs to the case (ii), then we set χ(P ) = (1);

- If P belongs to the case (iii), then we set χ(P ) = (1, 1, χ(Q));
- If P belongs to the case (iv), then we distinguish two cases:

- If the number k ≥ 2 of cells in the first column is odd, then we set χ(P ) =

(1, k − 1, χ(Q));

- Otherwise (k ≥ 2 is even), we set χ(P ) = (k, χ(Q));

See Figure 6 for an illustration of the map χ on a triangular dcc-polyomino.
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−→ (1, 1, 1, 4, 1, 2, 1, 1, 4, 1, 1, 1, 2, 8, 1, 2, 2, 2)

Figure 6. A triangular dcc-polyomino of area 37 with 9 columns and its
image by χ, which is a composition of 36 with parts in {1, 2, 4, 6, 8, , . . . } and
so that 8 parts are different from 1.

Theorem 3.2. For all n ≥ 0, χ is a bijection between the set of triangular dcc-polyominoes
of area n + 1 and the set of compositions of n where the parts belong to {1, 2, 4, 6, 8, . . .}.
Moreover, χ transports the number of columns minus one into the number of parts different
from 1 in the composition.

Proof. We can easily observe that the image by χ of a triangular dcc-polymomino of area
n + 1 is a composition in CPn. Moreover, if this polyomino P has k + 1 columns, then
ϕ(P ) has exactly k parts different to one. Conversely, any composition in CPn with k parts
different from 1 can be uniquely decomposed into one of the following forms:

(i) the empty composition () whenever n = 0;
(ii) the composition (1);
(ii) (1, 1, c1, . . . , cℓ), ℓ ≥ 0, where (c1, . . . , cℓ) ∈ CPn−2 with k parts different from 1;

(iva) (1, a, c1, . . . , cℓ), ℓ ≥ 0, a ≥ 2, where (c1, . . . , cℓ) ∈ CPn−a−1 with k−1 parts different
from 1;

(ivb) (a, c1, . . . , cℓ), ℓ ≥ 0, a ≥ 2, where (c1, . . . , cℓ) ∈ CPn−a with k − 1 parts different
from 1;

Therefore, the set of triangular dcc-polyominoes of area n + 1 and the set CPn have the
same recursive description, which ensures that χ is a bijection that transports the number
of columns minus one into the number of parts different from 1. □

Let tn,k be the number of triangular dcc-polyominoes of area n with exactly k columns.
Notice that an immediate consequence of the recursive decomposition of a dcc-polyomino
is the recursive formula tn,1 = 1 for n ≥ 1, and for n ≥ 3, k ≥ 2,

tn,k = tn−2,k +
n−1∑
ℓ=2

tn−ℓ,k−1.

As a byproduct of the bijection given in Theorem 3.2 we give a closed form for tn,k.

Theorem 3.3. If n ≥ k ≥ 1, then

tn,k =

⌊(n−1)/2⌋∑
r=⌊k/2⌋

(
n− 2− 2r + k

k − 1

)(
r − 1

r − k + 1

)
.
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Proof. Due to the bijection χ defined previously, tn,k corresponds to the number of com-
positions of n − 1 with parts in {1, 2, 4, 6, 8, . . .}, and where exactly k − 1 parts are dif-
ferent from 1. Such a composition c can be uniquely obtained from a composition of r,
k − 1 ≤ r ≤ n − 1, with k − 1 parts and where all parts lie in {2, 4, 6, 8, . . .}, by adding
(n − 1 − r) parts 1 in the right places. Since there are

(
n−r−1+k−1

k−1

)
=
(
n−r+k−2

k−1

)
ways for

adding these parts into k places (this is the number of ways of choosing k− 1 parts among
n− 1− r + k − 1 parts), we obtain

tn,k =
n−1∑

r=k−1

(
n− 2− r + k

k − 1

)
br,k−1,

where br,k−1 is the number of compositions of r having all its (k − 1) parts lying into
{2, 4, 6, 8, . . .}.
From the definition of the sequence br,s and for a given s, we obtain the following ex-

pression for its generating function :∑
r≥0

br,sx
r = (x2 + x4 + x6 + · · ·)s = x2s

(
1

1− x2

)s

.

From the equality 1/(1− x)m+1 =
∑∞

ℓ=0

(
m+ℓ
ℓ

)
xℓ, we have∑

r≥0

br,sx
r = x2s

∞∑
ℓ=0

(
s+ ℓ− 1

ℓ

)
x2ℓ.

We obtain br,s = 0 when r is odd and br,s =
(
r/2−1
r/2−s

)
whenever r is even. Therefore, by

considering the previous value of br,s for s = k − 1, we obtain

tn,k =
n−1∑

r=k−1

(
n− 2− r + k

k − 1

)
br,k−1

=

⌊(n−1)/2⌋∑
r=⌊k/2⌋

(
n− 2− 2r + k

k − 1

)(
r − 1

r − k + 1

)
. □

From this bijection, we deduce easily one-to-one correspondence between triangular dcc-
polyominoes of area n with k columns and consecutive partitions of n with k parts (i.e. par-
titions where every subset consists of consecutive elements). Indeed, the consecutive parti-
tion p associated to the polyomino P is defined from the composition χ(P ) = (c1, c2, . . . , cs)
as follows:

p = {1, . . . , c1}{c1 + 1, . . . , c1 + c2}{c1 + c2 + 1, . . . , c1 + c2 + c3} · · ·
· · · {c1 + c2 + . . .+ cs−1 + 1, . . . , c1 + c2 + . . .+ cs}.

The image of the polyomino represented in Figure 4 is

{1}{2}{3}{4, 5, 6, 7}{8}{9, 10}{11}{12}{13, 14, 15, 16}{17}{18}
{19}{20, 21}{22, 23, 24, 25, 26, 27, 28, 29}{30}{31, 32}{33, 34}{35, 36}.
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Let B = [b(n, k)] be the Riordan array defined by

B =

(
1

1− x
,

x

(1− x)(1− x2)

)
,

and let T be the matrix defined by T = [tn,k]n,k≥1 (A060098). The first few rows of the
matrix T are

T =



1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 0 0 0 0 0
1 4 1 0 0 0 0
1 6 3 0 0 0 0
1 9 8 1 0 0 0
1 12 16 4 0 0 0
1 16 30 13 1 0 0
...

...
...

...


.

Notice that the anti-diagonals of the matrix B are the rows of the matrix T , that is,
tn,k = b(n− k, k).

References

[1] E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci
numbers, Discrete Math. 170 (1997), 211–217.

[2] E. Barcucci, R. Pinzani, and R. Sprugnoli, Directed column-convex polyominoes by recurrence rela-
tions, Lecture Notes in Comput. Sci. vol. 668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-
540-56610-471

[3] E. Barcucci, F. Bertoli, A. Del Lungo, and R. Pinzani, The average height of directed column-convex
polyominoes having square, hexagonal and triangular cells. Math. Comput. Model. 26 (1997), 27–36.

[4] M.-P. Delest and S. Dulucq, Enumeration of directed column-convex animals with given perimeter
and area, Croat. Chem. Acta 66 (1993), 59–80.

[5] E. Deutsch and H. Prodinger, A bijection between directed column-convex polyominoes and ordered
trees of height at most three. Theoret. Comput. Sci. 307 (2003), 319–325.
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