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Abstract

Grand Dyck paths with air pockets (GDAP) are a generalization of Dyck paths with air
pockets by allowing them to go below the x-axis. We present enumerative results on GDAP
(or their prefixes) subject to various restrictions such as maximal/minimal height, ordinate
of the last point and particular first return decomposition. In some special cases we give
bijections with other known combinatorial classes.
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1 Introduction
In a recent paper [2], the authors introduce and study a new class of lattice paths, called
Dyck paths with air pockets (DAP for short). Such a path is a non empty lattice path in
the first quadrant of Z2 starting at the origin, ending on the x-axis, and consisting of up-
steps U “ p1, 1q and down-steps Dk “ p1,´kq, k ě 1, where two down steps cannot be
consecutive. See Figure 1 for an example. These paths can be viewed as ordinary Dyck
paths where each maximal run of down-steps is condensed into one large down step. As
mentioned in [2], they also correspond to a stack evolution with (partial) reset operations
that cannot be consecutive (see for instance [5]). In this paper, we generalize these paths
to grand Dyck path with air pockets (GDAP for short), which have the same definition as
DAP , except that they can go below the x-axis, and the empty path ε is considered as a
GDAP.

The main goal is to make enumerative studies on GDAP (or prefix of these paths) with
various restrictions on the maximal height reached, minimal height reached, height of the
last point, . . .
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The remaining of this paper is structured as follows. The next section recalls some useful
results from [2] and introduces several notations for particular subsets of GDAP. The main
result of Section 3 is Theorem 3.1 which gives the generating function counting the GDAP
with respect to the length, which is the ‘grand’ counterpart of the generating function in
(2.1) for DAP. In Section 4 we give similar results for prefixes of GDAP ending at a given
ordinate, the corresponding problem for DAP being already solved in [8]. In Section 5, we
provide generating functions for the number of partial GDAP that never go below the line
y “ m, with respect to the ordinate of the last point. In Section 6, we count partial GDAP
lying between the lines y “ 0 and y “ t, which correspond to partial DAP bounded by a
given height t ą 0. We present a constructive bijection between these paths of length n for
t “ 2 and the set of compositions of n´ 2 such that no two consecutive parts have the same
parity. In Section 7, we count partial GDAP lying between the lines y “ ´t and y “ t, and
we present a constructive bijection between these paths of length n for t “ 1 and the set
of compositions of n ` 3 such that the first part is odd, the last part is even, and no two
consecutive parts have the same parity. Finally, in Section 8 we provide enumerative results
for DAP with a special first return decompostion, which proves that there are in one-to-one
correspondence with Motzkin paths avoiding the patterns UH , HU and HH . We leave as
an open question the problem of finding a constructive bijection between these two sets.

2 Definitions and notations
2.1 DAP

The length of a path is the number of its steps, and for n ě 0, let An be the set of n-length
DAP. By definition A0 “ A1 “ ∅ and we set A “

Ť

ně2 An, see [2]. A DAP is called
prime whenever it ends with Dk, k ě 2, and returns to the x-axis only once. The set of all
prime DAP of length n is denoted Pn. Notice that UD is not prime, where for short we
denote D1 by D, so we set P “

Ť

ně3 Pn. If α “ UβUDk P Pn, then 2 ď k ă n and β is
a (possibly empty) prefix of a path in A, and we define the DAP α5 “ βUDk´1, called the
‘lowering’ of α. For example, the path α “ UUDUUD3 is prime, and α5 “ UDUUD2.
The map α ÞÑ α5 is clearly a bijection from Pn to An´1 for all n ě 3, and we denote by γ7

the inverse image of γ P An´1 (α7 is a kind of ‘elevation’ of α).

Figure 1: The Dyck path with air pockets UUDUD2UUUD2UD2UUD2.

Any DAP α P A can be decomposed depending on its second-to-last return to the x-axis:
either (i) α “ UD, or (ii) α “ βUD with β P A, or (iii) α P P , or pivq α “ βγ where
β P A and γ P P . So, ifApxq “

ř

ně2 anx
n where an is the cardinality of An, and P pxq “

ř

ně3 pnx
n where pn is the cardinality of Pn, then we have P pxq “ xApxq and the previous

decompositions imply the functional equation Apxq “ x2 ` x2Apxq ` xApxq ` xApxq2,
and

Apxq “
1 ´ x´ x2 ´

?
x4 ´ 2x3 ´ x2 ´ 2x` 1

2x
, (2.1)
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which generates the generalized Catalan numbers (see A004148 in [10]). The first values of
an for 2 ď n ď 10 are 1, 1, 2, 4, 8, 17, 37, 82, 185. In [2], the authors study the enumeration
of these paths according to many parameters, and they give a constructive bijection between
these paths and peakless Motzkin paths (i.e. lattice paths in the first quadrant, starting at
p0, 0q, ending on the x-axis, made of steps U “ p1, 1q, D “ p1,´1q and H “ p1, 0q, and
avoiding peaks of the form UD).

2.2 GDAP

The main object of study in this paper are grand Dyck paths with air pockets (GDAP
for short) which generalize DAP by allowing such paths to go below the x-axis; and for
convenience the empty path ε is a GDAP. See the first path in Figure 2 for an example. Let
Gn be the set of GDAP of length n ě 0, and we set G “

Ť

ně0 Gn.

Figure 2: A grand Dyck path with air pockets UUDUD4UDUUUUUD4U , and a partial
GDAP ending at ordinate 1 with an up-step.

We introduce notations for several subsets of G used in this study:

• G` is the set of GDAP starting with U , and the empty path;

– G`
1 is the set of elements of G` ending with Dk, k ě 1;

– G`
2 is the set of elements of G` ending with U .

• G´ is the set of GDAP starting with Dk, k ě 1;

– G´
1 is the set of elements of G´ ending with Dk, k ě 1;

– G´
2 is the set of elements of G´ ending with U .

Obviously, we have G` “ tεu Y G`
1 Y G`

2 , G´ “ G´
1 Y G´

2 , and G “ G` Y G´. Also,

we denote by
Ð

P the set of GDAP obtained from a prime DAP in P by mirroring it. For

instance, the mirror of U3D2UD2 P P is D2UD2U
3 P

Ð

P .

3 Enumeration of GDAP
In this section, we present a generating function that counts GDAP with respect to the length.

Any element of G`
1 is of the form αβ, where α P G` and β P P Y tUDu. Any element

of G`
2 is either of the form (i) αβ where α P G`

2 and β P
Ð

P Y tDUu, or of the form (ii) αβ

where α P G`
1 , β P

Ð

P Y tDUu, and αβ is the path obtained by merging the last step of α
together with the first step of β, i.e. if α “ xDi and β “ Djy, then αβ “ xDi`jy. Finally,
any element of G` is either the empty path ε, an element of G`

1 , or an element of G`
2 .

https://oeis.org/A004148
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Thus, we deduce the following system of equations:
$

’

’

&

’

’

%

G`
1 pxq “ G`pxqpx2 ` P pxqq

G`
2 pxq “ G`

2 pxqpx2 ` P pxqq `
1

x
G`

1 pxqpx2 ` P pxqq

G`pxq “ 1 `G`
1 pxq `G`

2 pxq,

where P , G`
1 , G`

2 , and G` are the generating functions with respect to the length for the
cardinalities of P , G`

1 , G`
2 , and G`, respectively. We have P pxq “ xApxq, where A is the

generating function for the set A of Dyck paths with air pockets, see (2.1). Solving the
system, we get:

G`
1 pxq “

x2
?
x4 ´ 2x3 ´ x2 ´ 2x` 1

,

G`
2 pxq “

p1 ´ x´ x2q
?
x4 ´ 2x3 ´ x2 ´ 2x` 1 ´ x4 ` 2x3 ` x2 ` 2x´ 1

2x4 ´ 4x3 ´ 2x2 ´ 4x` 2
,

G`pxq “
p1 ´ x` x2q

?
x4 ´ 2x3 ´ x2 ´ 2x` 1 ` x4 ´ 2x3 ´ x2 ´ 2x` 1

2x4 ´ 4x3 ´ 2x2 ´ 4x` 2
,

and the first terms of the respective series expansions associated with those generating
functions are:

‚ x2 ` x3 ` 2x4 ` 5x5 ` 11x6 ` 26x7 ` 63x8 ` 153x9 ` 376x10 `Opx11q,
‚ x3 ` 2x4 ` 5x5 ` 13x6 ` 32x7 ` 80x8 ` 201x9 ` 505x10 `Opx11q,
‚ 1 ` x2 ` 2x3 ` 4x4 ` 10x5 ` 24x6 ` 58x7 ` 143x8 ` 354x9 ` 881x10 `Opx11q.

They correspond to the OEIS sequences A051286, A110320, and A110236.

On the other hand, any element of G´ is of the form αβ, where α P
Ð

P Y tDUu and
β P G. Any element of G is either an element of G` or an element of G´.

Thus, we deduce the following system of equations:
#

G´pxq “ px2 ` P pxqqGpxq

Gpxq “ G`pxq ` px2 ` P pxqqGpxq,

where G´ and G are the generating functions with respect to the length for the cardinalities
of G´ and G, respectively. Solving the system, we get:

G´pxq “
p1 ´ x` x2 ´Rqpx4 ´ 2x3 ´ x2 ´ 2x` 1 ` p1 ´ x` x2qRq

2p1 ` x´ x2 `RqR

with R “
?
x4 ´ 2x3 ´ x2 ´ 2x` 1, and we have the following result.

Theorem 3.1. The o.g.f. that counts the set G with respect to the length is given by

Gpxq “
x4 ´ 2x3 ´ x2 ´ 2x` 1 ` p1 ´ x` x2qR

p1 ` x´ x2 `RqR

with R defined as above.

https://oeis.org/A051286
https://oeis.org/A110320
https://oeis.org/A110236
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Notice that there is a bijection χ between the sets G`
1 and G´

2 defined as follows: for
α P G`

1 , χpαq is simply the mirror of α, for instance χpUUUD3q “ D3UUU .
So, we easily have

#

G´
2 pxq “ G`

1 pxq

G´
1 pxq “ G´pxq ´G´

2 pxq.

The first terms of the series expansions of G´, G, G´
1 and G´

2 are respectively
‚ x2 ` x3 ` 3x4 ` 7x5 ` 16x6 ` 39x7 ` 95x8 ` 233x9 ` 577x10 `Opx11q,
‚ 1` 2x2 ` 3x3 ` 7x4 ` 17x5 ` 40x6 ` 97x7 ` 238x8 ` 587x9 ` 1458x10 `Opx11q,
‚ x4 ` 2x5 ` 5x6 ` 13x7 ` 32x8 ` 80x9 ` 201x10 `Opx11q,
‚ x2 ` x3 ` 2x4 ` 5x5 ` 11x6 ` 26x7 ` 63x8 ` 153x9 ` 376x10 `Opx11q.

They correspond to the OEIS sequences A203611, A051291, A110320, and A051286.

4 Partial GDAP ending at a given ordinate
Let prepGq be the set of partial GDAP, i.e. the set of all prefixes of elements of G, see the
second path in Figure 2 for an example. In this part, we enumerate partial GDAP ending at
a given ordinate with an up-step (resp. with a down-step) with respect to the length. Let fk
(resp. gk) be the generating function for the number (with respect to the length) of partial
GDAP ending at ordinate k P Z with an up-step (resp. with a down-step). For short, we will
write fk and gk instead of fkpxq and gkpxq.

According to the results in Section 2, for k “ 0 we obviously have:

f0 “ G`
2 pxq `G´

2 pxq “
1 ´ x` x2 `

?
x4 ´ 2x3 ´ x2 ´ 2x` 1

2
?
x4 ´ 2x3 ´ x2 ´ 2x` 1

´ 1,

and

g0 “ G`
1 pxq `G´

1 pxq “

`

1 ` x´ x2 ´
?
x4 ´ 2x3 ´ x2 ´ 2x` 1

˘

x

2
?
x4 ´ 2x3 ´ x2 ´ 2x` 1

.

The first terms of the series expansions of f0 and g0 are respectively
‚ x2 ` 2x3 ` 4x4 ` 10x5 ` 24x6 ` 58x7 ` 143x8 ` 354x9 ` 881x10 `Opx11q,
‚ x2 ` x3 ` 3x4 ` 7x5 ` 16x6 ` 39x7 ` 95x8 ` 233x9 ` 577x10 `Opx11q.

They correspond to the sequences A110236 and A203611 in OEIS. Clearly, we have
Gpxq “ 1 ` f0 ` g0.

For k ą 0, a partial GDAP ending at ordinate k can be written αβ, where α is either
empty or a GDAP ending on the x-axis with an up-step, and β is a partial DAP ending at
ordinate k. Then, we obtain

fk ` gk “ p1 ` f0q ¨ Tkpxq

with

Tkpxq “ xksk`1
2 , and s2 “

1 ` x´ x2 ´
?

´x2 ´ 2x3 ´ 2x` x4 ` 1

2x
,

where Tk is the o.g.f. that counts DAP ending at ordinate k with respect to length, which is
already obtained in [8].

As a consequence, we deduce the following result.

https://oeis.org/A203611
https://oeis.org/A051291
https://oeis.org/A110320
https://oeis.org/A051286
https://oeis.org/A110236
https://oeis.org/A203611
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Theorem 4.1. The o.g.f. that counts the partial GDAP ending at a positive ordinate (with
respect to the length) is given by

`

x2 ´ x´ 1 `
?
x4 ´ 2x3 ´ x2 ´ 2x` 1

˘2

4x
?
x4 ´ 2x3 ´ x2 ´ 2x` 1

.

The first terms of the series expansion are: x` x2 ` 4x3 ` 9x4 ` 22x5+55x6 ` 136x7 `

339x8 ` 849x9 ` 2132x10 `Opx11q.

For k ă 0, a partial GDAP ending at ordinate k can be written β or αβ, where α is a
GDAP ending with a down-step, and β is the symmetric about the x-axis of a partial DAP
ending at ordinate ´k ą 0 in the right-to-left model studied in [8]. Then, we obtain

fk ` gk “ Rkpxq

ˆ

1 `
g0pxq

x

˙

,

with

Rkpxq “ ps2 ´ 1q ¨
s´k´1
2

x
.

For instance, the first terms of the series expansion for k “ ´1,´2 are
‚ x`2x2 `4x3 `10x4 `24x5 `58x6 `143x7 `354x8 `881x9 `2204x10 `Opx11q,

‚ x`2x2 `5x3 `13x4 `32x5 `80x6 `201x7 `505x8 `1273x9 `3217x10 `Opx11q

which correspond to the sequences A110236 and A110320 in OEIS.
Notice that partial GDAP of length n´ 1 and ending at ordinate k “ ´1 are in one-to-

one correspondence with non-empty GDAP of length n and starting with an up-step (see the
set G` from Section 3). To perceive it, one can add an up-step at the end of a partial GDAP
ending at k “ ´1, apply a symmetry about the x-axis, and consider the mirror of this path.

Moreover, x2 ¨G`
2 pxq (see Section 3) is the generating function for partial GDAP ending

at k “ ´2. Such partial GDAP of length n are in one-to-one correspondence with paths
of length n ` 2 in G`

2 . To see it, from a partial GDAP ending at k “ ´2, one can add an
up-step at the beginning of the path and another one at the end.

Since there is an infinite number of partial paths of length n ending at negative height,
we cannot provide an ordinary generating function (with respect to the length) for these
paths. So, we get around this in the next section by counting partial GDAP lying above the
line y “ m for a given m ď 0.

5 Minorized partial GDAP
Let us denote by prepGqm the set of partial GDAP which never go below the line y “ m,
m ď 0, and let us reuse the same notations as in the previous section for the generating
functions fk and gk in this subset of prepGq. Obviously, we have fk “ 0 for all k ď m and
gk “ 0 for all k ă m. By convenience, we count the empty path in f0. Then, the o.g.f.’s
satisfy the following equations:

$

’

&

’

%

f0 “ 1 ` xf´1 ` xg´1,

@k ě m` 1, k ‰ 0, fk “ xfk´1 ` xgk´1,

@k ě m, gk “
ř8

i“1 xfk`i.

https://oeis.org/A110236
https://oeis.org/A110320
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As a consequence, we have fm`1 “ xgm. Now, we introduce the bivariate generating
functions

fpu, xq “ fpuq “

8
ÿ

k“m`1

ukfk and gpu, xq “ gpuq “

8
ÿ

k“m

ukgk.

Making use of the recursions above, we get:

fpuq “ 1 ` xu pfpuq ` gpuqq ,

gpuq “
x

1 ´ u
pumfp1q ´ fpuqq .

Plugging the second equation into the first one, we get:

fpuq “ 1 ` xufpuq `
x2u

1 ´ u
pumfp1q ´ fpuqq .

Solving for fpuq, we finally get:

fpuq “
1 ´ u` x2um`1fp1q

1 ´ u´ xu` xu2 ` x2u
. (5.1)

In order to compute fp1q, we use the kernel method (see [1, 7]) on fpuq. We can rewrite
the denominator—which is a polynomial in u, of degree 2—as xpu´ r1qpu´ r2q, where:

r1 “
1 ` x´ x2 `

?
x4 ´ 2x3 ´ x2 ´ 2x` 1

2x
,

r2 “
1 ` x´ x2 ´

?
x4 ´ 2x3 ´ x2 ´ 2x` 1

2x
,

and then, relation (5.1) implies

fpuq ¨ pxpu´ r1qpu´ r2qq “ 1 ´ u` x2um`1fp1q.

Plugging u “ r2 (which has a Taylor expansion at x “ 0), we obtain:

1 ´ r2 ` x2rm`1
2 fp1q “ 0,

which gives an expression for fp1q:

fp1q “
r2 ´ 1

x2rm`1
2

,

and then:

fpuq “

1 ´ u` pr2 ´ 1q

´

u
r2

¯m`1

1 ´ u´ xu` xu2 ` x2u
,

gpuq “
x

1 ´ u
pumfp1q ´ fpuqq .

Finally, we have:
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Theorem 5.1. The o.g.f. that counts the partial GDAP above the line y “ m (with respect
to the length) is given by

fp1q ` gp1q “
r´m
2 ´ r´1´m

2 ´ x2

x3
.

For instance, if m “ ´1,´2 the first terms of the series expansions are
‚ 1`2x`4x2`8x3`17x4`37x5`82x6`185x7`423x8`978x9`2283x10`Opx11q,
‚ 1`3x`6x2 `13x3 `29x4 `65x5 `148x6 `341x7 `793x8 `1860x9 `4395x10 `

Opx11q.
They correspond to the sequences A004148 and A093128 in OEIS.

6 Partial (G)DAP bounded by y “ 0 and y “ t

6.1 Enumerative results

In this section, we count partial GDAP lying between the lines y “ 0 and y “ t, which
correspond to partial DAP bounded by a given height t ą 0. We introduce the notation f tk,
gtk for 0 ď k ď t, f tpuq, and gtpuq, which are the counterparts of fk, gk, fpuq, and gpuq

defined in the previous section. So, we deduce the following system of equations:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´1 0
x ´1 x 0

. . . . . . . . . . . .
x ´1 x 0

0 x . . . x ´1

0
. . .

...
. . .

. . . x
. . .

0 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

f t0
...
...
f tt
gt0
...
...
gtt

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´1
0
...
...
...
...
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

For a given height t ě 0, the previous matrix (denoted At) is square with 2pt ` 1q rows.

Using classical properties of the determinant (in particular det
ˆ

A B
C D

˙

“ detpAD´BCq

whenever D is invertible, and C and D commute [9]), we can easily prove that Dt “

detpAtq satisfies
Dt`2 ` px2 ´ x´ 1qDt`1 ` xDt “ 0,

anchored with D0 “ 1, and D1 “ 1 ´ x2. Then we deduce

Dt “
2txt`1

W

˜

W ´ x2 ` x´ 1

pW ´ x2 ` x` 1q
t`1 ` p´1qt`1 W ` x2 ´ x` 1

pW ` x2 ´ x´ 1q
t`1

¸

,

where
W “

a

x4 ´ 2x3 ´ x2 ´ 2x` 1.

For instance, we haveD2 “ x4´x3´2x2`1, andD3 “ ´x6`2x5`2x4´2x3´3x2`1.

https://oeis.org/A004148
https://oeis.org/A093128
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Using Cramer’s rule to solve the system, for 0 ď k ď t, we have

f tk “
N t

k

Dt
, gtk “

N t
t`1`k

Dt
, (6.1)

whereN t
k is the determinant of the matrixAtpkq obtained fromAt by replacing the pk`1q-th

column with the vector p´1, 0, . . . , 0qT .
As we have done for Dt, it is easy to prove that N t

k satisfies the following recurrence
relations, for 0 ď k ď t:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

N t
0 “ Dt

N t
2t`1 “ 0

N t
k “ xN t´1

k´11 ď k ď t

N t
t`k “ xN t´1

t`k´2 2 ď k ď t

N t
t`1 “ x2N t´1

0 ` xN t´1
t .

See Table 1 for exact values of N t
k when 0 ď t ď 3 and 0 ď k ď 7.

kzt 0 1 2 3
0 1 ´x2 ` 1 x4 ´ x3 ´ 2x2 ` 1 ´x6 ` 2x5 ` 2x4 ´ 2x3 ´ 3x2 ` 1
1 0 x ´x3 ` x x5 ´ x4 ´ 2x3 ` x
2 x2 x2 ´x4 ` x2

3 0 ´x4 ` x3 ` x2 x3

4 x3 x6 ´ 2x5 ´ x4 ` x3 ` x2

5 0 ´x5 ` x4 ` x3

6 x4

7 0

Table 1: The first values of N t
k for 0 ď t ď 3 and 0 ď k ď 7.

Using (6.1) and the above recurrence relations for N t
k, we can deduce closed forms for

f tk, gtk, 0 ď k ď t.
So, we can state the following result.

Theorem 6.1. The o.g.f. that counts the nonempty GDAP bounded by the lines y “ 0 and
y “ t (with respect to the length) is

gt0 “
N t

t`1

Dt

with

N t
t`1 “

2t`2xt`3p´1qt

W px2 ´ x´ 1q2 ´W 3

ˆ

1

px2 ´ x´ 1 `W qt
´

1

px2 ´ x´ 1 ´W qt

˙

.

For instance, if t “ 1, 2, 3, 4, then we have

g10 “
x2

1 ´ x2
, g20 “

x2
`

1 ` x´ x2
˘

x4 ´ x3 ´ 2x2 ` 1
, g30 “

x2
`

x4 ´ 2x3 ´ x2 ` x` 1
˘

px3 ´ 2x2 ´ x` 1q p1 ` x´ x3q
, and
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g40 “
´x8 ` 3x7 ´ 3x5 ´ 2x4 ` x3 ` x2

x8 ´ 3x7 ´ x6 ` 5x5 ` 4x4 ´ 3x3 ´ 4x2 ` 1
,

and the first terms of the series expansion of these generating functions are respectively

‚ x2 ` x4 ` x6 ` x8 ` x10 `Opx11q,

‚ x2 ` x3 ` x4 ` 3x5 ` 2x6 ` 6x7 ` 6x8 ` 11x9 ` 16x10 `Opx11q,

‚ x2 ` x3 ` 2x4 ` 3x5 ` 7x6 ` 9x7 ` 22x8 ` 32x9 ` 66x10 `Opx11q,

‚ x2 ` x3 ` 2x4 ` 4x5 ` 7x6 ` 16x7 ` 27x8 ` 63x9 ` 112x10 `Opx11q.

The first two correspond to shifts of A000035 and A062200. The last two sequences do not
appear in [10].

6.2 Bijection with a set of compositions

As stated above, the enumeration of the set Gr0,2s
n of GDAP bounded by y “ 0 and y “ 2 is

given by g20 “
x2p1`x´x2q
x4´x3´2x2`1 which have a series expansion where the coefficients coincide

(up to a shift) with the sequence A062200 in [10]. In this part, for any n ě 0, we exhibit
a constructive bijection ψ between Gr0,2s

n and the set Cpn ´ 2q of compositions of n ´ 2
such that no two consecutive parts have the same parity (see [6] for the enumeration of
these objects, and [4] for more results about the enumeration of compositions with regard to
several statistics on parts).

Let us define the map ψ. Assuming n ě 2, let α “ α1 . . . αn P Gr0,2s
n and α1 “

α2α3 . . . αn´1. We write α1 “ B1B2 . . . Br where each Bi is a subpath of α1 satisfying the
following rules:

• if α1 does not contain U2 and UD2, then r “ 1 and B1 “ α1;

• otherwise, we split α1 into subpaths Bi, 1 ď i ď r, by cutting it after all up-steps that
are followed by another up-step or a D2-step.

For instance, if α “ UUD2UUDUD2UDUDUUD2 “ Uα1D2, then α1 “

B1B2B3B4B5 where B1 “ U , B2 “ D2U , B3 “ UDU , B4 “ D2UDUDU , B5 “ U .
We refer to Figure 3 for an illustration of this decompostion.

1 2 3 6 1

1 ` 2 ` 3 ` 6 ` 1 “ 13

Figure 3: The image by ψ of α “ UUD2UUDUD2UDUDUUD2 is ψpαq “ 1, 2, 3, 6, 1.

Let b1, . . . , br be the lengths of the subpaths B1, . . . , Br, respectively. It is clear that
b1 ` b2 ` . . . ` br “ n ´ 2. Moreover, if the subpath Bi starts with U and ends with
U , then Bi is of he form UpDUqk for some k ě 0, and Bi`1 is necessarily of the form
D2pUDqℓU for some ℓ, which implies that bi is odd and bi`1 is even; if the subpath Bi

https://oeis.org/A000035
https://oeis.org/A062200
https://oeis.org/A062200
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starts with D2 and ends with U , then Bi is of the form D2pUDqkU for some k ě 0, and
Bi`1 is necessarily of the form UpDUqℓ for some ℓ, which implies that bi is even and
bi`1 is odd. Thus, two consecutive bi and bi`1 always have different parities. Then, the
above procedure defines a map ψ from Gr0,2s

n to the set Cpn´ 2q, and for α P Gr0,2s
n , we set

ψpαq “ b1, b2, . . . , br.

Theorem 6.2. The map ψ from Gr0,2s
n to Cpn´ 2q is a bijection.

Proof. Since Gr0,2s
n and Cpn ´ 2q have the same cardinality (see the o.g.f. g20 and the

sequence A062200 at the end of subsection 6.1, it suffices to prove that ψ is surjective.
Let c “ c1, . . . , cr be a composition in Cpn ´ 2q, with r ě 2 (the case r “ 1 being

trivial since if c1 is even, then we have c “ ψpUpDUqc1{2Dq, and if c1 is odd we have
c “ ψpUpUDqpc1´1q{2UD2q).

For r ě 2, we distinguish four cases:

(i) c1 and cr are even,

(ii) c1 is even and cr is odd,

(iii) c1 and cr are odd,

(iv) c1 is odd and cr is even.

According to each case, we define α P Gr0,2s
n such that ψpαq “ c as follows:

Case (i):

α “ U pDUqc1{2 pUDqpc2´1q{2U D2UpDUqpc3´2q{2 . . . D2UpDUqpcr´2q{2 D;

Case (ii):

α “ U pDUqc1{2 pUDqpc2´1q{2U D2UpDUqpc3´2q{2 . . . pUDqpcr´1q{2U D2;

Case (iii):

α “ U pUDqpc1´1q{2U D2UpDUqpc2´2q{2 pUDqpc3´1q{2U . . . pUDqpcr´1q{2U D2;

Case (iv):

α “ U pUDqpc1´1q{2U D2UpDUqpc2´2q{2 pUDqpc3´1q{2U . . . D2UpDUqpcr´2q{2 D.

For each case, it is clear that α belongs to Gr0,2s
n , which implies that ψ is surjective, and then

bijective.

7 GDAP bounded by y “ ´t and y “ t

7.1 Enumerative results

In this section, we count GDAP lying between the lines y “ ´t and y “ t. We introduce
the notation f tk, gtk for ´t ď k ď t, f tpuq, and gtpuq, which are the counterparts of fk, gk,

https://oeis.org/A062200
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fpuq, and gpuq. So, we deduce the following system of equations:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´1 0
x ´1 x 0

. . . . . . . . . . . .
x ´1 x 0

0 x . . . x ´1

0
. . .

...
. . .

. . . x
. . .

0 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

f t´t
...
f t´1

f t0
f t1
...
f tt
gt´t

...

...
gtt

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
...
0

´1
0
...
0
0
...
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

For a given height t ě 0, the previous matrix (denoted A
1

t) is square with 2p2t ` 1q rows.
We notice that for all t ě 0, the matrix A

1

t is identical to the matrix A2t defined in the
previous section. Hence, we have D

1

t :“ detpA
1

tq “ detpA2tq “ D2t, i.e.

D
1

t “
4tx2t`1

W

˜

W ´ x2 ` x´ 1

pW ´ x2 ` x` 1q
2t`1 ´

W ` x2 ´ x` 1

pW ` x2 ´ x´ 1q
2t`1

¸

,

where
W “

a

x4 ´ 2x3 ´ x2 ´ 2x` 1.

Using Cramer’s rule to solve the system, for ´t ď k ď t, we have

f tk “
rN t
k

D
1

t

, gtk “
rN t
2t`1`k

D
1

t

, (7.1)

where rN t
k is the determinant of the matrix A

1

tpkq obtained from A
1

t by replacing the pk `

t` 1q-th column with the vector p0, . . . , 0,´1, 0, . . . , 0qT , where the ´1 is in the pt` 1q-th
position.

Now, we focus on the calculation of f tk and gtk for k “ 0. The other cases can be
obtained similarly, but they are much more technical and less interesting to present them
here. With the same arguments as in the previous section (in particular, using the mentioned
property of the determinant on blocks), it is easy to prove that rN t

0 satisfies:

rN t
0 “ Dt´1 ¨Dt.

Moreover, we have
rN t
2t`1 “ Dt´1 ¨N t

t`1.

Using the results obtained in the previous section, these two relations allow to obtain a
closed form for rN t

0 and rN t
2t`1. Using (7.1), we deduce closed forms for f t0 and gt0 and we

can state the following result.
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Theorem 7.1. The o.g.f. that counts the nonempty GDAP bounded by the lines y “ ´t and
y “ t (with respect to the length) is

f t0 ` gt0 “
Dt´1

D2t
¨

`

Dt `N t
t`1

˘

where Dt and N t
t`1 are defined in the previous section.

For instance, if t “ 1, 2, 3, then we have

f10 ` g10 “
1

x4
´x3

´2x2
`1
, f20 ` g20 “

px´1qpx`1q
2

x7
´2x6

´3x5
`2x4

`6x3
`3x2

´x´1
,

f30 ` g30 “
px4

´x3
´2x2

`1q
2

x12
´5x11

`4x10
`10x9

´4x8
´19x7

´4x6
`17x5

`11x4
´5x3

´6x2
`1
,

and the first terms of the series expansion of these generating functions are respectively
‚ 1 ` 2x2 ` x3 ` 3x4 ` 4x5 ` 5x6 ` 10x7 ` 11x8 ` 21x9 ` 27x10 `Opx11q,
‚ 1 ` 2x2 ` 3x3 ` 5x4 ` 13x5 ` 22x6 ` 48x7 ` 93x8 ` 190x9 ` 375x10 `Opx11q,
‚ 1 ` 2x2 ` 3x3 ` 7x4 ` 15x5 ` 36x6 ` 75x7 ` 176x8 ` 386x9 ` 869x10 `Opx11q.

The first one corresponds to a shift of A122514. The last two sequences do not appear in
[10].

7.2 Bijection with a set of compositions

As stated above, the enumeration of the set Gr´1,1s
n of GDAP bounded by y “ ´1 and y “ 1

is given by f10 ` g10 “ 1
x4´x3´2x2`1 which have a series expansion where the coefficients

coincide (up to a shift) with the sequence A122514. In this part, for any n ě 0, we exhibit
a constructive bijection ϕ between Gr´1,1s

n and the set C1pn` 3q of compositions of n` 3
such that the first part is odd, the last part is even, and no two consecutive parts have the
same parity.

Now, let us define the map ϕ. Assuming n ě 2, let α “ α1 . . . αn P Gr´1,1s
n . We

write α “ B1B2 . . . Br where each Bi is a subpath of α obtained by applying the same
decomposition made on α1 in subsection 6.2. Let b1, b2, . . . , br be the lengths of subpaths
B1, . . . , Br respectively. In the case r ě 2, let L be the reversed composition br, . . . , b1.
The composition ϕpαq of n`3 is obtained from L after going through the following process:

• if br´1 is even, then add 1 to br; otherwise, append 1 at the beginning of L;

• if b1 is even, then add 2 to b1; otherwise, append 2 at the end of L.

For instance, if α “ UD2UUDUD2UDUDUUD then we have B1 “ U , B2 “ D2U ,
B3 “ UDU , B4 “ D2UDUDU , B5 “ UD, b1 “ 1, b2 “ 2, b3 “ 3, b4 “ 6, b5 “ 2,
L “ 2, 6, 3, 2, 1, and ϕpαq “ 3, 6, 3, 2, 1, 2.

In the case r “ 1, α is either pUDqn{2 or pDUqn{2. So, we define ϕppUDqn{2q “

n` 1, 2, and ϕppDUqn{2q “ 1, n` 2 (these are valid compositions since n has to be even
in these cases).

In the case r “ 0, α is empty, and we define ϕpεq “ 1, 2.

Due to the definition, it is clear that the composition ϕpαq belongs to C1pn` 3q, for any
n ě 0.

https://oeis.org/A122514
https://oeis.org/A122514
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1 2 3 6 2

2, 6, 3, 2, 1 3, 6, 3, 2, 1, 2

Figure 4: The image by ϕ of α “ UD2UUDUD2UDUDUUD is ϕpαq “ 3, 6, 3, 2, 1, 2.

Theorem 7.2. The map ϕ from Gr´1,1s
n to C1pn` 3q is a bijection.

Proof. Since Gr´1,1s
n and C1pn`3q have the same cardinality (see the end of Subsection 7.1),

it suffices to prove that ϕ is surjective.
Let c “ c1, . . . , cr be an element of C1pn`3q, with r ě 2 (the case r “ 1 does not occur

since c1 is odd and cr is even implies r ě 2). Thus, r is necessarily even. We distinguish
four cases:

(i) c1 “ 1 and cr “ 2,

(ii) c1 “ 1 and cr is even and greater than 2,

(iii) c1 is odd and greater than 1 and cr “ 2,

(iv) c1 is odd and greater than 1 and cr is even and greater than 2.

According to each case, we define α P Gr´1,1s
n such that ϕpαq “ c:

Case (i): Since cr´1 is odd, cr´2 is even, and so on, and finally c2 is even.

α “ pUDqpcr´1´1q{2U D2UpDUqpcr´2´2q{2 . . . pUDqpc3´1q{2U D2UpDUqpc2´2q{2 .

Case (ii):

α “ pDUqpcr´2q{2 pUDqpcr´1´1q{2U . . . pUDqpc3´1q{2U D2UpDUqpc2´2q{2 .

Case (iii):

α “ pUDqpcr´1´1q{2U D2UpDUqpcr´2´2q{2 . . . D2UpDUqpc2´2q{2 pUDqpc1´1q{2 .

Case (iv):

α “ pDUqpcr´2q{2 pUDqpcr´1´1q{2U . . . D2UpDUqpc2´2q{2 pUDqpc1´1q{2 .

For each case, it is clear that α belongs to Gr´1,1s
n , which implies that ϕ is surjective,

and then bijective.

8 DAP with a special first return decomposition
Recently in [3], the authors introduced and enumerated the subset Dh,ě of restricted Dyck
paths defined as follows: the set Dh,ě is the union of the empty Dyck path with all Dyck
paths P having a first return decomposition P “ UαDβ satisfying the conditions:

#

α, β P Dh,ě,

hpUαDq ě hpβq,
(8.1)
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where hpαq is the maximal ordinate reached by the path α. The authors prove algebraically
and bijectively that n-length paths in Dh,ě are in one-to-one correspondence with Motzkin
paths of length n. Based on this decomposition and in the same way as for Dyck paths, we
define a subset of A Y tεu Ă G as follows. The set H is the union of the empty path with
all DAP γ P A having a first return decomposition satisfying the following condition:

(C) γ “ αβ with α P P Y tUDu, and α5 P H whenever α ‰ UD, β P H and hpαq ě

hpβq.
For n ě 0, we denote by Hn the set of DAP of length n in H. For instance, we

have H0 “ tεu, H1 “ H, H2 “ tUDu, H3 “ tUUD2u, H4 “ tUUUD3, UDUDu,
H5 “ tUUUUD4, UUDUD2, UUD2UDu.

In this section, we enumerate the set Hn. For k ě 0, let Akpxq “
ř

ně0 an,kx
n (resp.

Bkpxq “
ř

ně0 bn,kx
n) be the generating function where the coefficient an,k (resp. bn,k) is

the number of DAP in Hn having a maximal height equal to k (resp. of at most k). So, we

have Bkpxq “
k
ř

i“0

Aipxq and the generating function for the set H, namely Bpxq, is given

by Bpxq “ lim
kÑ8

Bkpxq.

Due to the definition of H, we have
$

’

&

’

%

A0pxq “ B0pxq “ 1,

A1pxq “ x2A0pxqB1pxq,

Akpxq “ xAk´1pxqBkpxq.

.

Lemma 8.1. For k ě 1, we have

Bk´1pxq “
p1 ´ x3 ` xqBkpxq ´ 1

x2Bkpxq ` x
.

Proof. We proceed by induction on k. Since B0pxq “ 1 and B1pxq “ x2

1´x2 it is easy to

check that B0pxq “
p1´x3

`xqB1pxq´1
x2B1pxq`x .

Now, assume that Bi´1pxq “
p1´x3

`xqBipxq´1
x2Bipxq`x for 1 ď i ď k ´ 2, we prove the result

for i “ k ´ 1. From the above equations, and the recurrence hypothesis on Bk´2pxq, we
obtain

Bkpxq “ Akpxq `Bk´1pxq

“ xAk´1pxqBkpxq `Bk´1pxq

“ xpBk´1 ´Bk´2qBkpxq `Bk´1pxq

“ xpBk´1 ´
p1 ´ x3 ` xqBk´1pxq ´ 1

x2Bk´1pxq ` x
qBkpxq `Bk´1pxq.

Isolating Bk´1pxq, we obtain Bk´1pxq “
p1´x3

`xqBkpxq´1
x2Bkpxq`x , which completes the induction.

Taking the limit in the relation of Lemma 1 whenever k tends to 8, we obtain

Bpxq “
p1 ` x´ x3qBpxq ´ 1

x2Bpxq ` x
,
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which induces the following result.

Theorem 8.2. The o.g.f. that counts the set H with respect to the length is given by

Bpxq “
1 ´ x3 ´

?
x6 ´ 2x3 ´ 4x2 ` 1

2x2
.

The above generating function Bpxq counts also Motzkin paths of length n avoiding the
patterns UH , HU and HH , see sequence A329699. The first terms of its series expansion
are: 1 ` x2 ` x3 ` 2x4 ` 3x5 ` 6x6 ` 10x7 ` 20x8 ` 36x9 ` 72x10 ` 136x11 ` 273x12.

We finish this part with a natural question.
Open question: The sets H and that of tUH,HU,HHu-avoiding Motzkin paths are thus
in bijection and it would be interesting to exhibit a constructive bijection between them.
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