# Equivalence classes of permutations modulo descents and left-to-right maxima

Jean-Luc Baril and Armen Petrossian

LE2I UMR-CNRS 6306, Université de Bourgogne, B.P. 47 870, 21078 Dijon, France {barjl,armen.petrossian}@u-bourgogne.fr

#### Abstract

In a recent paper [2], the authors provide enumerating results for equivalence classes of permutations modulo excedances. In this paper we investigate two other equivalence relations based on descents and left-to-right maxima. Enumerating results are presented for permutations, involutions, derangements, cycles and permutations avoiding one pattern of length three.

**Keywords:** permutation; equivalence class; descent; left-to-right maximum; pattern; Bell, Motzkin, Catalan, Fine.

### **1** Introduction and notations

Let  $S_n$  be the set of permutations of length n, *i.e.*, all one-to-one correspondences from  $[n] = \{1, 2, ..., n\}$  into itself. The one-line notation of a permutation  $\pi \in S_n$  is  $\pi_1 \pi_2 \cdots \pi_n$  where  $\pi_i = \pi(i)$  for  $i \in [n]$ . The graphical representation of  $\pi \in S_n$  is the set of points in the plane at coordinates  $(i, \pi_i)$  for  $i \in [n]$ . A cycle in  $S_n$  is an n-length permutation  $\pi$  such that there exist some indices  $i_1, i_2, \ldots, i_n$  with  $\pi(i_1) = i_2, \pi(i_2) =$  $i_3, \ldots, \pi(i_{n-1}) = i_n$  and  $\pi(i_n) = i_1$ . A cycle will also be denoted by its cyclic notation  $\pi = \langle i_1, i_2, \ldots, i_n \rangle$ . Let  $C_n \subset S_n$  be the set of all cycles of length n. We denote by  $I_n$ the set of involutions of length n, *i.e.*, permutations  $\pi$  such that  $\pi^2 = Id$  where Id is the identity permutation.

Let  $\pi$  be a permutation in  $S_n$ . A fixed point of  $\pi$  is a position  $i \in [n]$  where  $\pi(i) = i$ . The set of *n*-length permutations with no fixed points (called *derangements*) will be denoted  $D_n$ . An excedance of  $\pi$  is a position  $i \in [n-1]$ , such that  $\pi(i) > i$ . The set of excedances of  $\pi$  will be denoted  $E(\pi)$ . A descent of  $\pi$  is a position  $i \in [n-1]$ , such that  $\pi(i) > \pi(i+1)$ . Let  $D(\pi)$  be the set of descents in  $\pi$ , and  $DD(\pi)$  be the set of pairs  $(\pi(i), \pi(i+1))$  for  $i \in D(\pi)$ . By abuse of language, we also use the term descent for such a pair. A left-to-right maximum is a position  $i \in [n]$ , such that  $\pi(i) > \pi(j)$  for all j < i. The set of left-to-right maxima of  $\pi$  will be denoted  $L(\pi)$ . For instance, if  $\pi = 1 \ 4 \ 2 \ 7 \ 5 \ 3 \ 8 \ 6 \ \text{then } E(\pi) = \{2, 4, 7\}, D(\pi) = \{2, 4, 5, 7\},$  $DD(\pi) = \{(4, 2), (7, 5), (5, 3), (8, 6)\}$  and  $L(\pi) = \{1, 2, 4, 7\}.$ 

In [2], the authors consider the equivalence relation on  $S_n$  in which two permutations  $\pi$  and  $\sigma$  are equivalent if they coincide on their excedance sets, *i.e.*,  $E(\pi) = E(\sigma)$  and  $\pi(i) = \sigma(i)$  for  $i \in E(\pi)$ . In this paper we investigate the counterpart of this equivalence relation for descents and left-to-right maxima. More precisely, we define the  $\ell$ -equivalence relation  $\sim_{\ell}$  where  $\pi \sim_{\ell} \sigma$  if and only if  $\pi$  and  $\sigma$  coincide on their left-to-right maximum sets, *i.e.*,  $L(\pi) = L(\sigma)$  and  $\pi(i) = \sigma(i)$  for  $i \in L(\pi)$ . Also, we define the *d*-equivalence relation  $\sim_{d}$  where two permutations  $\pi$  and  $\sigma$  are equivalent if  $DD(\pi) = DD(\sigma)$ . The motivation for studying this *d*-equivalence relation is that two permutations  $\pi$  and  $\sigma$  are equivalent under excedance ([2]) if and only if  $\phi(\pi)$  and  $\phi(\sigma)$  are *d*-equivalent, where  $\phi$  is the Foata's first transformation [5] (see Theorem 6). All these definitions remain available for subsets of  $S_n$ . For instance, the permutation  $32541 \in S_5$  is  $\ell$ -equivalent to 32514, 31524, 31542 and *d*-equivalent to 54132. The set of  $\ell$ -equivalence (resp. *d*-equivalence) classes in  $S_n$  is denoted  $S_n^{\sim \ell}$  (resp.  $S_n^{\sim d}$ ).

In this paper we propose to compute the number of  $\ell$ - and *d*-equivalence classes for several subsets of permutations.

A permutation  $\pi \in S_n$  avoids the pattern  $\tau \in S_k$  if and only if there does not exist any sequence of indices  $1 \leq i_1 < i_2 < \cdots < i_k \leq n$  such that  $\pi(i_1)\pi(i_2)\dots\pi(i_k)$  is order-isomorphic to  $\tau$  (see [13, 14]). We denote by  $S_n(\tau)$  the set of permutations of  $S_n$ avoiding the pattern  $\tau$ . For example, if  $\tau = 123$  then  $52143 \in S_5(\tau)$  while  $21534 \notin S_5(\tau)$ . Many classical sequences in combinatorics appear as the cardinality of pattern-avoiding permutation classes. A large number of these results were firstly obtained by West and Knuth [8, 12, 13, 14, 15, 16] (see books of Kitaev [7] and Mansour [11]).

In Section 2, we investigate the equivalence relation based on the set of left-to-right maxima. We enumerate  $\ell$ -equivalence classes for  $S_n$ ,  $C_n$ ,  $I_n$ ,  $D_n$  and several sets of pattern avoiding permutations. In Section 3, we study equivalence relation for descents and also provide enumerating results for some restricted sets of permutations. See Table 1, 2 and 3 for an overview of these results.

## 2 Enumeration of classes under $\ell$ -equivalence relation

Throughout this section two permutations  $\pi$  and  $\sigma$  belong to a same class whenever they coincide on their sets of left-to-right maxima, *i.e.*,  $L(\pi) = L(\sigma)$  and  $\pi(i) = \sigma(i)$ for  $i \in L(\pi)$ .

A Dyck path of semilength  $n, n \ge 0$ , will be a lattice path starting at (0,0), ending at (2n,0), and never going below the x-axis, consisting of up steps U = (1,1) and down steps D = (1,-1). Let  $\mathcal{P}_n$  be the set of all Dyck paths of semilength n. A peak of height  $h \ge 0$  in a Dyck path is a point of ordinate h which is both at the end of an up step and at the beginning of a down step.

From a permutation  $\pi \in S_n$ , we consider the path on the graphical representation of  $\pi$  with up and right steps along the edges of the squares that goes from the lower-left corner to the upper-right corner and leaving all the points  $(i, \pi_i)$ ,  $i \in [n]$ , to the right and remaining always as close to the diagonal y = x as possible (the path can possibly reach the diagonal but never crosses it). Let us define the Dyck path of length 2n (called *Dyck path associated with*  $\pi$ ) obtained from this lattice path by reading an up-step Uevery time the path moves up, and a down-step D every time the path moves to the right. It is crucial to notice that only the points  $(i, \pi_i)$  with  $i \in L(\pi)$  involve in this construction. See Figure 1 for an illustration of this classical construction.



Figure 1: Permutation  $\sigma = 25173486$ 

Using this construction, all permutations of a same class provide the same Dyck path. Moreover, any Dyck path in  $\mathcal{P}_n$  can be obtained from a permutation in  $S_n$ . Indeed, we define the sequence  $\ell = \ell_1 \ell_2 \dots \ell_r$ , (resp.  $k = k_1 k_2 \dots k_r$ ),  $r \geq 1$  where  $\ell_i$ (resp.  $k_i$ ) is the number (resp. the number plus one) of up steps U (resp. down steps D) before the *i*-th peak. Since P is a Dyck path, we have  $k_i \leq \ell_i$  for  $i \leq r$ . So, we define the permutation  $\pi = \ell_1 A_1 \ell_2 A_2 \dots \ell_r A_r$  where each  $\ell_i$ ,  $i \leq r$ , is at position  $k_i$ , and such that the concatenated block  $A_1 A_2 \dots A_r$  consists of the increasing sequence of values in  $[n] \setminus \{\ell_1, \ell_2, \ldots, \ell_r\}$ . Therefore,  $\ell_{i+1}$  is greater than all elements in  $A_i$  which means that the set of left-to-right maxima of  $\pi$  is  $L(\pi) = \{k_1, k_2, \ldots, k_r\}$  with  $\pi(k_i) = \ell_i$  for  $i \leq r$ . By construction,  $\pi$  avoids the pattern 321 and P is its associated Dyck path which gives a bijection from  $S_n^{\sim \ell}$  to  $\mathcal{P}_n$  that induces Theorem 1. In the following, the permutation  $\pi$  will be called the *associated permutation* of P. Notice that a similar construction already exists in the literature (see the Krattenthaler bijection  $\Psi$  defined in [9], Section 4).

**Theorem 1** The sets  $S_n^{\sim_{\ell}}$  (resp.  $S_n(321)^{\sim_{\ell}}$ ),  $n \geq 1$ , are enumerated by the Catalan numbers (sequence A000108 in the on-line Encyclopedia of Integer Sequences [18]).

#### 2.1 Equivalence classes for classical subsets of permutations

In this part we give several enumerating results for classical subsets of  $S_n$  (see Table 1).

**Theorem 2** The sets  $D_n^{\sim_{\ell}}$ ,  $n \ge 1$ , are enumerated by the Fine numbers (A000108 in [18]).

Proof. Using the above construction, we construct a Dyck path P of length 2n from  $\pi \in D_n$ . Since  $\pi$  does not contain any fixed point, P does not contain any peak of height one. Conversely, let P be a Dyck path with no peak of height one and  $\pi \in S_n(321)$  be its associated permutation of P (see the above construction). Since P does not contain any peak of height one, this implies that there does not exist  $i \in L(\pi)$  such that  $\pi_i = i$ . Now, for a contradiction, let us assume that there is  $j \notin L(\pi)$  such that  $\pi_j = j$ . Since  $j \notin L(\pi)$ , there is i < j such that  $\pi_i > j = \pi_j$ . So, there are at most j - 2 values  $\pi_k < \pi_j$  for k < j, or equivalently there is at least one value  $\pi_k < \pi_j$  for k > j which contradicts the fact that  $\pi$  avoids the pattern 321. Finally, the result follows because the set of Dyck paths with no peak of height one is enumerated by the Fine numbers (see [4]).

**Theorem 3** Let  $Irr_n$  be the set of permutations  $\pi \in S_n$  such that  $\pi_i \neq \pi_{i+1} - 1$ ,  $1 \leq i \leq n-1$ . The sets  $Irr_n^{\sim_\ell}$ ,  $n \geq 1$ , are enumerated by the sequence A078481 in [18].

*Proof.* Let  $\pi$  be a permutation in  $Irr_n$ . Then the Dyck path associated with  $\pi$  does not contain any consecutive steps of the form UDUD. Conversely, let P be a Dyck path which does not contain any occurrence of consecutive UDUD, and  $\pi \in S_n(321)$  be its associated permutation. Since P does not contain any occurrence of UDUD, this implies that there does not exist  $i \in L(\pi)$  such that  $\pi_i = \pi_{i+1} - 1$ . In the case

where there is  $j, j \notin L(\pi)$  such that  $\pi_j = \pi_{j+1} - 1$ , we define the blocks of maximal length  $J_1, J_2, \ldots, J_s$  of the form  $a, a + 1, \ldots, b$  such that  $a \leq b$  and  $\pi_a = \pi_{a+1} - 1$ ,  $\pi_{a+1} = \pi_{a+2} - 1, \ldots, \pi_{b-1} = \pi_b - 1$  where  $a \notin L(\pi)$ . We consider the permutation  $\sigma$ obtained from  $\pi$  by the following process: for each block  $J_k = a, a+1, \ldots, b, 1 \leq k \leq s$ , in the one-line notation of  $\pi$  we replace the block  $\pi(J_k)$  with its mirror  $\pi(J'_k)$  where  $J'_k = b, b - 1, \ldots, a$ . So,  $\sigma$  and  $\pi$  belong to the same class, and  $\sigma \in Irr_n$ . For instance, the Dyck path UUUUDDDDD would produce  $\pi = 4123 \notin Irr_4$ , then applying the described process, the permutation  $\sigma = 4321 \in Irr_4$  is obtained. Finally, the result is obtained since the set of Dyck paths with no occurrence of UDUD is enumerated by the sequence A078481 in [18] (see [17]).

**Theorem 4** The sets  $I_n^{\sim_{\ell}}$ ,  $n \geq 1$ , are enumerated by the Motzkin numbers (A001006 in [18]).

Proof. We will show that each equivalence class contains a unique involution that avoids the pattern 4321 (see A001006 in [18] and [6] for the enumeration of  $I_n(4321)$  by Motzkin numbers). Let  $\pi$  be an involution in  $I_n$ . If there exists a position  $i, i < \pi_i$ , such that i is not a left-to-right maximum, then there is  $j \in [n]$  such that  $j < i < \pi_i < \pi_j$ which means that  $\pi$  contains the pattern 4321. So, we define the involution  $\sigma$  satisfying  $L(\pi) = L(\sigma)$  and verifying the additional conditions  $\sigma_i = i$  whenever  $i \notin L(\pi)$ . By construction,  $\sigma$  avoids the pattern 4321 and belongs to the same class of  $\pi$ . Conversely, let  $\sigma$  be an involution avoiding the pattern 4321. Then, the inequality  $j < i < \sigma_i < \sigma_j$ ,  $i, j \in [n]$  does not occur. Therefore, if  $i \notin L(\sigma)$ , then i is necessarily a fixed point. Therefore, there is a unique involution  $\sigma \in I_n(4321)$  having  $L(\sigma)$  as set of left-to-right maxima.

**Theorem 5** The sets  $C_n^{\sim \ell}$ ,  $n \geq 1$ , are enumerated by the Catalan numbers (A000108 in [18]).

*Proof.* Any permutation  $\pi \in S_{n-1}$  can uniquely be decomposed as a product of transpositions

$$\pi = \langle p_1, 1 \rangle \cdot \langle p_2, 2 \rangle \cdots \langle p_{n-1}, n-1 \rangle$$

where  $p_i$  are some integers such that  $1 \le p_i \le i \le n-1$  (see for instance [1]).

Let  $\phi$  be the map from  $S_{n-1}$  to  $S_n$  defined, for every  $\pi \in S_{n-1}$ , by

$$\phi(\pi) = \langle 1, 1 \rangle \cdot \langle p_1, 2 \rangle \cdots \langle p_{n-1}, n \rangle$$

where  $\pi = \langle p_1, 1 \rangle \cdot \langle p_2, 2 \rangle \cdots \langle p_{n-1}, n-1 \rangle$ .

Using Corollary 1 in [1],  $\phi$  is a bijection from  $S_{n-1}$  to  $C_n$  satisfying  $L(\pi) = L(\phi(\pi))$  for any  $\pi \in S_n$  and such that  $\phi(\pi)(k) = \pi(k) + 1$  for  $k \in L(\pi)$ . Therefore,  $\phi$  induces a bijection from  $S_{n-1}^{\sim_{\ell}}$  to  $C_n^{\sim_{\ell}}$ . With Theorem 1, the cardinality of  $C_n^{\sim_{\ell}}$  is the (n-1)-th Catalan number.

| Set                 | Sequence          | Sloane  | $a_n, 1 \le n \le 9$                  |
|---------------------|-------------------|---------|---------------------------------------|
| $S_n^{\sim_\ell}$   | Catalan           | A000108 | 1, 2, 5, 14, 42, 132, 429, 1430, 4862 |
| $C_n^{\sim_\ell}$   | Catalan           | A000108 | 1, 1, 2, 5, 14, 42, 132, 429, 1430    |
| $I_n^{\sim_\ell}$   | Motzkin           | A001006 | 1, 2, 4, 9, 21, 51, 127, 323, 835     |
| $D_n^{\sim_\ell}$   | Fine              | A000957 | 0, 1, 2, 6, 18, 57, 186, 622, 2120    |
| $Irr_n^{\sim_\ell}$ | Dyck with no UDUD | A078481 | 1, 1, 3, 7, 19, 53, 153, 453, 1367    |

Table 1: Number of equivalence classes for classical subsets of permutations.

### **2.2** Equivalence classes for $S_n(\alpha)^{\sim_{\ell}}$ with $\alpha \in S_3$

In this part we give several enumerating results for the sets  $S_n(\alpha)^{\sim_{\ell}}$  where the pattern  $\alpha$  lies in  $S_3$  (see Table 2).

Theorem 1 proves that  $S_n(321)^{\sim_{\ell}}$  is enumerated by the *n*th Catalan number. Let  $\phi$  be the bijection from  $S_n(321)$  to  $S_n(312)$  described (modulo a basic symmetry) in [3] (Lemma 4.3, page 148). It has the property to leave all left-to-right maxima fixed. Therefore, it induces a bijection from  $S_n(321)^{\sim_{\ell}}$  to  $S_n(312)^{\sim_{\ell}}$ .

Now, let us examine the cases where the pattern  $\alpha$  belongs to  $\{123, 132, 213, 231\}$ .

**Theorem 6** The sets  $S_n(123)^{\sim_\ell}$ ,  $n \geq 1$ , are enumerated by the central polygonal numbers  $1 + \frac{n(n-1)}{2}$  (A000124 in [18]).

Proof. Let  $\pi$  be a permutation in  $S_n(123)$ . It is straightforward to see that the leftto-right maxima of  $\pi$  are 1 and *i* where  $\pi_i = n$  for some *i*,  $1 \leq i \leq n$ . We necessarily have  $i - 1 \leq \pi_1$  because the condition  $\pi_1 < \pi_j < n$  implies j < i. Since the values *i* and *j*,  $1 \leq i, j \leq n$ , characterize a class in  $S_n(123)^{\sim_\ell}$ , it follows that the cardinality of  $S_n(123)^{\sim_\ell}$  is given by  $1 + \sum_{i=2}^n \sum_{j=i-1}^{n-1} 1 = 1 + \frac{n(n-1)}{2}$ .

**Theorem 7** For  $\alpha \in \{132, 213, 231\}$ , the sets  $S_n(\alpha)^{\sim_{\ell}}$ ,  $n \geq 1$ , are enumerated by the binary numbers  $2^{n-1}$ .

Proof. Let  $\pi$  be a permutation in  $S_n(231)$ . It can be written  $\pi = \sigma n\gamma$  where  $\sigma \in S_k(231)$ for some  $k, 0 \leq k \leq n-1$ , and  $\gamma$  is obtained from a permutation in  $S_{n-k-1}(231)$  by adding k on all these entries. Therefore, the set  $L(\pi)$  of left-to-right maxima of  $\pi$  is the union of  $\{k+1\}$  with the set  $L(\sigma)$  of left-to-right maxima of  $\sigma$ . For  $n \geq 1$ , let  $a_n$ be the cardinality of  $S_n(231)^{\sim_\ell}$ . Varying k from 0 to n-1, we have  $a_n = 1 + \sum_{k=1}^{n-1} a_k$ anchored with  $a_1 = 1$ . Thus, we deduce  $a_n = 2^{n-1}$  for  $n \geq 1$ .

Basic symmetries on permutations allow to obtain the result whenever  $\alpha$  lies in  $\{132, 312\}$ .

| Pattern                   | Sequence          | Sloane  | $a_n, 1 \le n \le 9$                  |
|---------------------------|-------------------|---------|---------------------------------------|
| {123}                     | Central polygonal | A000124 | 1, 2, 4, 7, 11, 16, 22, 29, 37        |
| $\{312\},\{321\}$         | Catalan           | A000108 | 1, 2, 5, 14, 42, 132, 429, 1430, 4862 |
| $\{132\},\{213\},\{231\}$ | Binary            | A000079 | 1, 2, 4, 8, 16, 32, 64, 128, 256      |

Table 2: Number of equivalence classes for permutations avoiding one pattern in  $S_3$ .

## 3 Enumeration of classes under *d*-equivalence relation

In this section two permutations  $\pi$  and  $\sigma$  belong to a same class whenever  $DD(\pi) = DD(\sigma)$ , *i.e.*, if the set of pairs  $(\pi_i, \pi_{i+1})$  for  $i \in D(\pi)$  is equal to the set of pairs  $(\sigma_i, \sigma_{i+1})$  for  $i \in D(\sigma)$ .

A partition  $\Pi$  of [n] is any collection of non-empty pairwise disjoint subsets, called blocks, whose union is [n]. The standard form of  $\Pi$  is  $\Pi = B_1/B_2/\ldots$ , where the blocks  $B_i$  are arranged so that their smallest elements are in increasing order. For convenience, we assume also that elements in a same block are arranged in decreasing order. From a permutation  $\pi \in S_n$ , we associate the unique partition  $\Pi$  defined as follows. Two elements x > y belong to the same block in  $\Pi$  if and only if there exist i and j, i < j, such that  $\pi_i = x > \pi_{i+1} > \cdots > \pi_{j-1} > \pi_j = y$ . Conversely, any partition  $\Pi = B_1/B_2/\ldots/B_k$ ,  $k \ge 1$ , is the associated to the permutation  $B_1B_2\ldots B_k$ . Theorem 8 becomes a straightforward consequence.

**Theorem 8** The sets  $S_n^{\sim d}$ ,  $n \ge 1$ , are enumerated by the Bell numbers (A000110 in [18]).

**Theorem 9** The sets  $S_n(321)^{\sim_d}$ ,  $n \geq 1$ , are enumerated by the Motzkin numbers (A001006 in [18]).

Proof. Let  $\pi \in S_n(321)$  and  $DD(\pi) = \{(M_1, m_1), (M_2, m_2), \ldots, (M_r, m_r)\}, r \geq 0$ , be the set of pairs  $(\pi_i, \pi_{i+1})$  where *i* is a descent of  $\pi$ . Since  $\pi$  avoids 321,  $DD(\pi)$ does not contain two pairs of the form  $(\pi_i, \pi_{i+1})$  and  $(\pi_{i+1}, \pi_{i+2})$ . Then, we define the involution  $\sigma \in I_n$  as follows:  $\sigma(M_i) = m_i, \sigma(m_i) = M_i$  for  $1 \leq i \leq r$  and  $\sigma(k) = k$ if *k* does not appear in any pair of  $DD(\pi)$ . For a contradiction, let us assume that  $\sigma$ contains a pattern 4321. Then there exist two pairs  $(M_i, m_i)$  and  $(M_j, m_j)$  in  $DD(\pi)$ such that  $M_i > M_j > m_j > m_i$ . If the descent  $(M_i, m_i)$  is on the left (in  $\pi$ ) of the descent  $(M_j, m_j)$ , then the subsequence  $M_i M_j m_j$  is a pattern 321 of  $\pi$ ; otherwise, the subsequence  $M_j m_j m_i$  also is a 321-pattern. In the two cases we obtain a contradiction, which ensures that the involution  $\sigma$  avoids the pattern 4321.

Conversely, let  $\sigma$  be an involution avoiding the pattern 4321. There exists a sequence of pairs  $(M_1, m_1), \ldots, (M_r, m_r), r \ge 0$ , such that  $M_i < M_{i+1}, m_i < m_{i+1}$  for  $i \le r-1$ and such that  $M_i > m_i, \sigma(M_i) = m_i$  and  $\sigma(m_i) = M_i$  for  $i \le r$  and  $\sigma(k) = k$  for  $k \in [n] \setminus \{M_1, \ldots, M_r, m_1, \ldots, m_r\}$ . We define the permutation  $\pi$  with the following process. We start with the sequence  $M_1 m_1 M_2 m_2 \ldots M_r m_r$ ; we insert in increasing order all other values k satisfying  $\sigma(k) = k$  as follows: if  $m_{i-1} < k < m_i$  then we insert k between  $m_{i-1}$  and  $M_i$ ; if  $k < m_1$  then we insert k before  $M_1$ ; and if  $k \ge m_r$  then we insert k after  $m_r$ . Obviously, this construction induces that  $\pi$  avoids 321. Moreover,  $\sigma$ can be obtained from  $\pi$  by the construction of the beginning of this proof. Thus, there is a bijection between  $S_n(321)^{\sim d}$  and  $I_n(4321)$  which is enumerated by the Motzkin numbers (see A001006 in [18] and [6]).

**Lemma 1** Let  $\pi$  and  $\pi'$  be two permutations in  $S_n(132)$  belonging to the same dequivalence class. If we have  $\pi_1 = \pi'_1$  then  $\pi = \pi'$ .

Proof. We proceed by induction on n. A simple observation gives the result for  $n \leq 3$ . Now, let us assume that Lemma 1 is true for  $k \leq n-1$ . Let  $\pi$  and  $\pi'$  be two permutations in  $S_n(132)$  such that  $\pi_1 = \pi'_1$ . We can write  $\pi = \alpha n\beta$  (resp.  $\pi' = \alpha' n\beta'$ ) where  $\beta \in S_k(132)$  for some  $k, 0 \leq k \leq n-1$  (resp.  $\beta' \in S_{k'}(132)$  for some  $k', 0 \leq k' \leq n-1$ ), and  $\alpha$  (resp.  $\alpha'$ ) is obtained from a permutation in  $S_{n-k-1}(132)$  (resp.  $S_{n-k'-1}(132)$ ) by adding k (resp. k') on all these entries. Let m (resp. m') be the minimal value of  $\alpha$ (resp.  $\alpha'$ ).

Without loss of generality, we assume that  $m' \leq m \leq \pi_1 = \pi'_1$ . For a contradiction, assume that m' < m. So, there is two consecutive entries a and m' in  $\alpha'$  such that a > m'. As m' < m, the descent (a, m') does not appear in  $\alpha$ . Thus, (a, m') appears

in  $\beta$ . Let  $\alpha_1$  be the first value of  $\alpha$ ; the subsequence  $\alpha_1 am'$  is necessarily a pattern 132 which is a contradiction. Thus, we have m = m' and then k = k'. We deduce  $\alpha$  and  $\alpha'$  (resp.  $\beta$  and  $\beta'$ ) are *d*-equivalent and the recurrence hypothesis gives  $\alpha = \alpha'$ . Moreover the descent  $(n, \beta_1)$  is equal to the descent  $(n, \beta'_1)$  and then  $\beta_1 = \beta'_1$ . Using the recurrence hypothesis we conclude  $\beta = \beta'$  and then,  $\pi = \pi'$ .

**Theorem 10** The sets  $S_n(132)^{\sim_d}$ ,  $n \geq 1$ , are enumerated by  $c_n - c_{n-1} + 1$  where  $c_n = \frac{1}{n+1} \binom{2n}{n}$  is the n-th Catalan number.

*Proof.* Let  $a_n$  be the cardinality of  $S_n(132)^{\sim d}$ . We distinguish three kinds of classes: (1) classes with a representative  $\pi$  satisfying  $\pi_1 = n$ ; (2) classes with a representative  $\pi$  satisfying  $\pi_n = n$ ; (3) the remaining classes.

Case (1). Such a class contains a permutation  $\pi$  such that  $\pi_1 = n$ , *i.e.*,  $\pi = n\pi'$  with  $\pi' \in S_{n-1}(132)$ . Using Lemma 1, there is a unique  $\sigma = \pi' \in S_{n-1}(132)$  such that  $n\sigma$  and  $\pi$  belong to the same class. Thus, the number of classes in this case is also the cardinality of  $S_{n-1}(132)$ , that is the (n-1)-th Catalan number  $c_{n-1}$ .

Case (2). Such a class contains a permutation  $\pi$  such that  $\pi_n = n$ . So, the number of classes in this case is also the number of elements in  $S_{n-1}(132)^{\sim_d}$ , that is  $a_{n-1}$ .

Case (3). Now we consider the classes that do not lie in the two previous cases. Any permutation  $\pi$  of such a class satisfies  $\pi_i = n$  for some  $i \in [2, n-1]$ , and since  $\pi$  avoids 132,  $\pi$  can be written  $\pi = \alpha n\beta$  where  $\beta \in S_{n-i}(132)$  and  $\alpha$  is obtained by adding (n-i) on all entries of a permutation in  $S_{i-1}(132)$ .

Let us consider  $j, 1 \le j \le i - 1$ , the position where  $\alpha$  reaches its minimum m.

If j = 1 then  $\pi = (n - i + 1) \dots (n - 1)n\beta$  and this permutation lies in the same class of  $n\beta(n - i + 1) \dots (n - 1)$  that satisfies Case (1). Then, j = 1 does not occur.

Now we assume  $j \geq 2$  and let  $\sigma$  be a permutation in  $S_n(132)$  lying in the same class of  $\pi$ . Then,  $\sigma$  must contain the two descents  $(n, \pi_{i+1})$  and  $(\pi_{j-1}, m)$ . These two descents necessarily appear in the same order as in  $\pi$  (otherwise, a pattern 132 would be created with  $\pi_{i+1}\pi_{j-1}m$ ). Thus, the minimum m' of values on the left of n in  $\sigma$ is necessarily less or equal to m. For a contradiction, let us assume that m' < m. The value m' appears necessarily on the right of the descent  $(\pi_{j-1}, m)$  in  $\sigma$  (otherwise,  $m'\pi_{j-1}m$  would be a pattern 132). Therefore, a descent of the form (a, b),  $a \geq m$  and b < m would necessarily exists in  $\sigma$ , which is not possible because such a descent cannot belong in  $\pi$ .

Thus, we deduce m = m' and  $\sigma$  has the similar decomposition  $\sigma = \alpha' n \beta'$  where  $\beta' \in S_{n-i}(132)$  and  $\alpha'$  is obtained by adding (n-i) on all entries of some permutation in  $S_{i-1}(132)$ . So,  $\alpha$  (resp.  $\beta$ ) is equivalent to  $\alpha'$  (resp.  $\beta'$ ). Hence, Lemma 1 implies that  $\beta = \beta'$ . Then, for a given  $i \in [2, n-1]$ , there are exactly  $c_{n-i} \cdot (a_{i-1}-1)$  classes verifying this case (we subtract one to  $a_{i-1}$  because we do not consider  $\pi = (n-i+1) \dots n\beta$ ).

So, such classes are enumerated by  $\sum_{k=2}^{n-1} (a_{k-1}-1) \cdot c_{n-k}$ . Considering the three cases, the cardinality  $a_n$  of  $S_n(132)^{\sim_d}$  satisfies for  $n \geq 2$ ,

$$a_n = c_{n-1} + a_{n-1} + \sum_{k=2}^{n-1} (a_{k-1} - 1) \cdot c_{n-k}.$$

A simple calculation proves that  $a_n = c_n - c_{n-1} + 1$  for  $n \ge 2$ .

**Theorem 11** The sets  $S_n(123)^{\sim_d}$ ,  $n \geq 2$ , are enumerated by  $c_n + n - (n+2) \cdot 2^{n-3} + \frac{(n-2)(n-1)}{2}$  where  $c_n = \frac{1}{n+1} {\binom{2n}{n}}$  is the n-th Catalan number.

Proof. Let  $\pi$  be a permutation in  $S_n(123)$ . Then  $\pi$  has a unique decomposition into blocks of decreasing sequences, *i.e.*,  $\pi = A_1 A_2 \dots A_r$ ,  $1 \leq i \leq r$ , where blocks  $A_i$  consist of sequences of decreasing values (possibly reduced to one value) and such that  $\ell_i < f_{i+1}$ for  $1 \leq i \leq r-1$ , where  $f_i$  (resp.  $\ell_i$ ) is the first (resp. last) element of  $A_i$ .

We distinguish three cases (1) r = 1; (2) r = 2; and (3)  $r \ge 3$ .

Case (1). We necessarily have  $\pi = n(n-1) \dots 21$  and its equivalence class contains only one element.

Case (2). We have  $\pi = A_1A_2$  with  $\ell_1 < f_2$ . (i) If  $f_1 < \ell_2$  then the class of  $\pi$  contains only one element since the permutation  $\sigma = A_2A_1$  is not there. Therefore, there are (n-1) such classes. (ii) If  $f_1 > \ell_2$  then the class of  $\pi$  contains exactly two elements  $\pi$  and  $\sigma = A_2A_1$ . Since the number of permutations of length n with n-2 descents is  $2^n - (n+1)$ , the number of classes for the subcase (ii) is  $\frac{2^n - (n+1) - (n-1)}{2} = 2^{n-1} - n$ . Finally, there are  $2^{n-1} - n + n - 1 = 2^{n-1} - 1$  classes for Case (2).

Case (3).  $\pi$  contains at least three blocks. We decompose  $\pi = A_1 B A_r$  where  $B = A_2 \dots A_{r-1}$ ,  $r \geq 3$ , such that  $f_2 = n$ ,  $\ell_{r-1} = 1$  with  $A_1$  and  $A_r$  possibly empty.

Let  $\sigma$  be a permutation in  $S_n(123)$  belonging to the class of  $\pi$ . We will prove that  $\sigma$  is either  $\pi$  or  $A_r B A_1$ .

For this, we will prove that the block B also appears in  $\sigma$ . It is obvious whenever B is a decreasing sequence. Now, let us assume that B is the concatenation of at least two blocks, that is  $B = A_2 \dots A_{r-1}$  with  $r \ge 4$ .

(i) For a contradiction, we suppose that there exist i and j,  $2 \leq i < j \leq r-1$  such that  $A_i$  appears on the right of  $A_j$  into  $\sigma$ , *i.e.*,  $\sigma = \alpha A_j \beta A_i \gamma$  for some  $\alpha, \beta, \gamma$  possibly empty. Since  $\sigma$  avoids 123 and  $f_j < f_i$ ,  $\alpha$  does not contain any value a such that  $a < f_j$  (otherwise  $af_jf_i$  would be a pattern 123). Also,  $\alpha$  does not contain any value a such that  $a > f_j$  (otherwise there would be  $b \leq a$  such that  $(b, f_j)$  is descent in  $\sigma$  that does not appear in  $\pi$ ). Thus  $\alpha$  is necessarily empty. By a simple symmetry,  $\gamma$  is also empty.

This implies that all other blocks of  $\pi$  appear between the two blocks  $A_j$  and  $A_i$  in  $\sigma$ . Thus, all other blocks consist of values a such that  $a \in [1, \ell_j - 1] \cup [f_i + 1, n]$  (otherwise  $\ell_j a f_i$  would be a pattern 123). Since  $\pi$  contains at least three blocks there is at least one block between  $A_j$  and  $A_i$  in  $\sigma$ .

The case  $\ell_j = 1$  does not occur. Indeed, this would mean that all blocks between  $A_j$  and  $A_i$  contain values x greater than  $f_i$  which creates a descent of the form  $(x, f_i)$  that does not appear in  $\pi$ . A similar argument proves that  $f_i = n$  does not occur.

Let us consider the case where n and 1 do not appear in  $A_i$  and  $A_j$ . Since B contains at least two blocks, n and 1 do not appear in the same block in B. Let R (resp. S) be the block containing n (resp. 1). In  $\sigma$ , the last element  $\ell(R)$  of R is necessarily less than  $\ell_j$  (otherwise  $\sigma$  would contain a pattern 123, that is  $\ell_j \ell(R) x$  where x is the value just after  $\ell(R)$  in  $\sigma$ ). A same argument shows that the first element f(S) of Sis greater than  $f_i$ . In  $\pi$ , this would mean that  $\ell(R)\ell_i f(S)$  is a pattern 123 which is a contradiction. Finally, all blocks of B appear in  $\sigma$  in the same order as  $\pi$ .

(*ii*) Now we will prove that  $A_1$  does not appear between  $A_2$  and  $A_{r-1}$  in  $\sigma$ . For a contradiction, let us assume that  $A_1$  appears between  $A_2$  and  $A_{r-1}$  in  $\sigma$ . Let a be the value of  $\sigma$  just after the block  $A_1$ . If  $a < \ell_1$  then  $\sigma$  contains the descent ( $\ell_1, a$ ) that does not appear in  $\pi$ ; otherwise,  $\ell_2 \ell_1 a$  would be a pattern 123 in  $\sigma$  which gives a contradiction. A same argument proves that  $A_r$  does not appear between  $A_2$  and  $A_{r-1}$ in  $\sigma$ .

Therefore, we deduce that either  $\sigma = \pi$  or  $\sigma = A_r B A_1$ .

Now we will enumerate permutations  $\pi \in S_n(123)$  of Case (3) such that there is  $\sigma \in S_n(123)$ ,  $\sigma \neq \pi$ , belonging to the same class of  $\pi$ , *i.e.*,  $A_1BA_r$  and  $A_rBA_1$  do not contain any pattern 123. This case is characterized by the fact that there is no value a in the block B such that  $\min \{\ell_1, \ell_r\} < a < \max \{f_1, f_r\}$  (otherwise, one of the two permutations  $A_1BA_r$ ,  $A_rBA_1$  would contain the pattern 123). See Figure 1 for a graphical representation of such a permutation.



Figure 2: Illustration of  $\pi = A_1 B A_r \in S_n(123)$  having two elements in its class.

If B contains only one block,  $A_1$  and  $A_r$  are non-empty blocks. Varying the size k of B from 2 to n-2, and the size  $\ell$  of  $A_1$  from 1 to n-k-1, the number of permutations having two elements in its class is  $a_n = \sum_{k=2}^{n-2} (k-1) \cdot \sum_{\ell=1}^{n-k-1} {n-k \choose \ell}$ .

If B contains at least two blocks,  $A_1$  and  $A_r$  are blocks (possibly empty). Varying the size k of B from 4 to n-1 and varying the size  $\ell$  of  $A_1$  from 0 to n-k, the number of permutations having two elements in its class is  $b_n = \sum_{k=4}^{n-1} (2^{k-2} - (k-1)) \cdot \sum_{\ell=0}^{n-k} {n-k \choose \ell}$ .

Finally, the number of classes in  $S_n(123)$  is obtained from  $c_n$  by subtracting the number of classes having two elements, that is  $c_n - \frac{1}{2}(2^n - 2n + a_n + b_n) = c_n - (n + 2) \cdot 2^{n-3} + \frac{n(n-1)}{2} + 1.$ 

| Pattern            | Sequence                                           | Sloane  | $a_n, 1 \le n \le 9$                   |
|--------------------|----------------------------------------------------|---------|----------------------------------------|
| {}                 | Bell                                               | A000110 | 1, 2, 5, 15, 52, 203, 877, 4140, 21147 |
| $\{231\}, \{312\}$ | Catalan                                            | A000108 | 1, 2, 5, 14, 42, 132, 429, 1430, 4862  |
| {321}              | Motzkin                                            | A001006 | 1, 2, 4, 9, 21, 51, 127, 323, 835      |
| $\{132\},\{213\}$  | $c_n - c_{n-1} + 1$                                | New     | 1, 2, 4, 10, 29, 91, 298, 1002, 3433   |
| {123}              | $c_n - (n+2) \cdot 2^{n-3} + \frac{n(n-1)}{2} + 1$ | New     | 1, 2, 4, 9, 25, 84, 307, 1139, 4195    |

Table 3: Number of equivalence classes for permutations avoiding at most one pattern of  $S_3$ .

## References

- J.-L. Baril. Statistics-preserving bijections between classical and cyclic permutations. Information Processing Letters, 113, 17–22, 2013.
- [2] J.-L. Baril, T. Mansour and A. Petrossian. Equivalence classes of permutations modulo excedances. *Journal of Combinatorics*, 5(4), 453–469, 2014.
- [3] M. Bona. Combinatorics of permutations. Chapman and Hall/CRC, Second Edition, 2012.
- [4] E. Deutsch and L. Shapiro. A survey of the Fine numbers. Discrete Mathematics, 241(13), 241-265, 2001.

- [5] D.C. Foata, M.P. Schützenberger. Théorie Géométrique des Polynômes Euleriens, Lecture Notes in Math., 138, Springer-Verlag, Berlin, 1970.
- [6] O. Guibert, E. Pergola and R. Pinzani. Vexillary involutions are enumerated by Motzkin numbers. Annals of Combinatorics, 5, 153–174, 2001.
- [7] S. Kitaev. Patterns in permutations and words, Springer-Verlag, 2011.
- [8] D.E. Knuth. The art of computer programming. Vol. 1, Addison-Wesley, Reading MA, 1973, Third edition, 1997.
- [9] C. Krattenthaler. Permutations with restricted patterns and Dyck paths. Advances in Applied Math., 27(2-3), 510–530, 2001.
- [10] T. Mansour. Combinatorics of Set Partitions. Discrete Mathematics and its Applications, Chapman & Hall/CRC, 2013.
- [11] T. Mansour. Permutations avoiding a pattern from  $S_k$  and at least two patterns from  $S_3$  Ars. Combin., 62, 227–239, 2002.
- [12] T. Mansour and A. Vainshtein Restricted 132-avoiding permutations Adv. Appl. Math., 26, 258–269, 2001.
- [13] R. Simion and F.W. Schmidt. Restricted permutations. European Journal of Combinatorics, 6, 383-406, 1985.
- [14] J. West. Permutations with forbidden subsequences and stack-sortable permutations. Ph.D. Thesis, MIT, 1990.
- [15] J. West. Generating trees and forbidden subsequences. Proceeding of sixth FPSAC, 441–450, 1994.
- [16] J. West. Generating trees and the Catalan and Schröder numbers. Discrete Math., 146, 247–262, 1995.
- [17] A. Sapanoukis, I. Tasoulas and P. Tsikouras. Counting strings in Dyck paths. Discrete Mathematics, 307(23), 2909-2924, 2007.
- [18] N.J.A. Sloane. On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org/.
- [19] R. Stanley. Enumerative Combinatorics. Cambridge University Press, Vol. 1, 1997.