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Abstract

In a recent paper [2], the authors provide enumerating results for equivalence
classes of permutations modulo excedances. In this paper we investigate two
other equivalence relations based on descents and left-to-right maxima. Enumer-
ating results are presented for permutations, involutions, derangements, cycles
and permutations avoiding one pattern of length three.
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1 Introduction and notations

Let Sn be the set of permutations of length n, i.e., all one-to-one correspondences
from [n] = {1, 2, . . . , n} into itself. The one-line notation of a permutation π ∈ Sn is
π1π2 · · ·πn where πi = π(i) for i ∈ [n]. The graphical representation of π ∈ Sn is the
set of points in the plane at coordinates (i, πi) for i ∈ [n]. A cycle in Sn is an n-length
permutation π such that there exist some indices i1, i2, . . . , in with π(i1) = i2, π(i2) =
i3, . . . , π(in−1) = in and π(in) = i1. A cycle will also be denoted by its cyclic notation
π = 〈i1, i2, . . . , in〉. Let Cn ⊂ Sn be the set of all cycles of length n. We denote by In
the set of involutions of length n, i.e., permutations π such that π2 = Id where Id is
the identity permutation.

Let π be a permutation in Sn. A fixed point of π is a position i ∈ [n] where π(i) = i.
The set of n-length permutations with no fixed points (called derangements) will be
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denoted Dn. An excedance of π is a position i ∈ [n − 1], such that π(i) > i. The
set of excedances of π will be denoted E(π). A descent of π is a position i ∈ [n − 1],
such that π(i) > π(i + 1). Let D(π) be the set of descents in π, and DD(π) be
the set of pairs (π(i), π(i + 1)) for i ∈ D(π). By abuse of language, we also use the
term descent for such a pair. A left-to-right maximum is a position i ∈ [n], such
that π(i) > π(j) for all j < i. The set of left-to-right maxima of π will be denoted
L(π). For instance, if π = 1 4 2 7 5 3 8 6 then E(π) = {2, 4, 7}, D(π) = {2, 4, 5, 7},
DD(π) = {(4, 2), (7, 5), (5, 3), (8, 6)} and L(π) = {1, 2, 4, 7}.

In [2], the authors consider the equivalence relation on Sn in which two permutations
π and σ are equivalent if they coincide on their excedance sets, i.e., E(π) = E(σ)
and π(i) = σ(i) for i ∈ E(π). In this paper we investigate the counterpart of this
equivalence relation for descents and left-to-right maxima. More precisely, we define
the ℓ-equivalence relation ∼ℓ where π ∼ℓ σ if and only if π and σ coincide on their
left-to-right maximum sets, i.e., L(π) = L(σ) and π(i) = σ(i) for i ∈ L(π). Also, we
define the d-equivalence relation ∼d where two permutations π and σ are equivalent
if DD(π) = DD(σ). The motivation for studying this d-equivalence relation is that
two permutations π and σ are equivalent under excedance ([2]) if and only if φ(π) and
φ(σ) are d-equivalent, where φ is the Foata’s first transformation [5] (see Theorem 6).
All these definitions remain available for subsets of Sn. For instance, the permutation
32541 ∈ S5 is ℓ-equivalent to 32514, 31524, 31542 and d-equivalent to 54132. The set of
ℓ-equivalence (resp. d-equivalence) classes in Sn is denoted S∼ℓ

n (resp. S∼d

n ).
In this paper we propose to compute the number of ℓ- and d-equivalence classes for

several subsets of permutations.
A permutation π ∈ Sn avoids the pattern τ ∈ Sk if and only if there does not exist

any sequence of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that π(i1)π(i2) . . . π(ik) is
order-isomorphic to τ (see [13, 14]). We denote by Sn(τ) the set of permutations of Sn

avoiding the pattern τ . For example, if τ = 123 then 52143 ∈ S5(τ) while 21534 /∈ S5(τ).
Many classical sequences in combinatorics appear as the cardinality of pattern-avoiding
permutation classes. A large number of these results were firstly obtained by West and
Knuth [8, 12, 13, 14, 15, 16] (see books of Kitaev [7] and Mansour [11]).

In Section 2, we investigate the equivalence relation based on the set of left-to-right
maxima. We enumerate ℓ-equivalence classes for Sn, Cn, In, Dn and several sets of
pattern avoiding permutations. In Section 3, we study equivalence relation for descents
and also provide enumerating results for some restricted sets of permutations. See Table
1, 2 and 3 for an overview of these results.
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2 Enumeration of classes under ℓ-equivalence rela-

tion

Throughout this section two permutations π and σ belong to a same class whenever
they coincide on their sets of left-to-right maxima, i.e., L(π) = L(σ) and π(i) = σ(i)
for i ∈ L(π).

A Dyck path of semilength n, n ≥ 0, will be a lattice path starting at (0, 0), ending
at (2n, 0), and never going below the x-axis, consisting of up steps U = (1, 1) and down
steps D = (1,−1). Let Pn be the set of all Dyck paths of semilength n. A peak of
height h ≥ 0 in a Dyck path is a point of ordinate h which is both at the end of an up
step and at the beginning of a down step.

From a permutation π ∈ Sn, we consider the path on the graphical representation
of π with up and right steps along the edges of the squares that goes from the lower-left
corner to the upper-right corner and leaving all the points (i, πi), i ∈ [n], to the right
and remaining always as close to the diagonal y = x as possible (the path can possibly
reach the diagonal but never crosses it). Let us define the Dyck path of length 2n (called
Dyck path associated with π) obtained from this lattice path by reading an up-step U
every time the path moves up, and a down-step D every time the path moves to the
right. It is crucial to notice that only the points (i, πi) with i ∈ L(π) involve in this
construction. See Figure 1 for an illustration of this classical construction.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 1: Permutation σ = 2 5 1 7 3 4 8 6

Using this construction, all permutations of a same class provide the same Dyck
path. Moreover, any Dyck path in Pn can be obtained from a permutation in Sn.
Indeed, we define the sequence ℓ = ℓ1ℓ2 . . . ℓr, (resp. k = k1k2 . . . kr), r ≥ 1 where ℓi
(resp. ki) is the number (resp. the number plus one) of up steps U (resp. down steps
D) before the i-th peak. Since P is a Dyck path, we have ki ≤ ℓi for i ≤ r. So, we define
the permutation π = ℓ1A1ℓ2A2 . . . ℓrAr where each ℓi, i ≤ r, is at position ki, and such
that the concatenated block A1A2 . . . Ar consists of the increasing sequence of values
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in [n]\{ℓ1, ℓ2, . . . , ℓr}. Therefore, ℓi+1 is greater than all elements in Ai which means
that the set of left-to-right maxima of π is L(π) = {k1, k2, . . . , kr} with π(ki) = ℓi for
i ≤ r. By construction, π avoids the pattern 321 and P is its associated Dyck path
which gives a bijection from S∼ℓ

n to Pn that induces Theorem 1. In the following, the
permutation π will be called the associated permutation of P . Notice that a similar
construction already exists in the literature (see the Krattenthaler bijection Ψ defined
in [9], Section 4).

Theorem 1 The sets S∼ℓ

n (resp. Sn(321)
∼ℓ), n ≥ 1, are enumerated by the Catalan

numbers (sequence A000108 in the on-line Encyclopedia of Integer Sequences [18]).

2.1 Equivalence classes for classical subsets of permutations

In this part we give several enumerating results for classical subsets of Sn (see Table 1).

Theorem 2 The sets D∼ℓ

n , n ≥ 1, are enumerated by the Fine numbers (A000108 in
[18]).

Proof. Using the above construction, we construct a Dyck path P of length 2n from
π ∈ Dn. Since π does not contain any fixed point, P does not contain any peak of height
one. Conversely, let P be a Dyck path with no peak of height one and π ∈ Sn(321) be
its associated permutation of P (see the above construction). Since P does not contain
any peak of height one, this implies that there does not exist i ∈ L(π) such that πi = i.
Now, for a contradiction, let us assume that there is j /∈ L(π) such that πj = j. Since
j /∈ L(π), there is i < j such that πi > j = πj . So, there are at most j − 2 values
πk < πj for k < j, or equivalently there is at least one value πk < πj for k > j which
contradicts the fact that π avoids the pattern 321. Finally, the result follows because
the set of Dyck paths with no peak of height one is enumerated by the Fine numbers
(see [4]). 2

Theorem 3 Let Irrn be the set of permutations π ∈ Sn such that πi 6= πi+1 − 1,
1 ≤ i ≤ n− 1. The sets Irr∼ℓ

n , n ≥ 1, are enumerated by the sequence A078481 in [18].

Proof. Let π be a permutation in Irrn. Then the Dyck path associated with π does
not contain any consecutive steps of the form UDUD. Conversely, let P be a Dyck
path which does not contain any occurence of consecutive UDUD, and π ∈ Sn(321)
be its associated permutation. Since P does not contain any occurrence of UDUD,
this implies that there does not exist i ∈ L(π) such that πi = πi+1 − 1. In the case
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where there is j, j /∈ L(π) such that πj = πj+1 − 1, we define the blocks of maximal
length J1, J2, . . . , Js of the form a, a + 1, . . . , b such that a ≤ b and πa = πa+1 − 1,
πa+1 = πa+2 − 1, . . . , πb−1 = πb − 1 where a /∈ L(π). We consider the permutation σ
obtained from π by the following process: for each block Jk = a, a+1, . . . , b, 1 ≤ k ≤ s,
in the one-line notation of π we replace the block π(Jk) with its mirror π(J ′

k) where
J ′

k = b, b− 1, . . . , a. So, σ and π belong to the same class, and σ ∈ Irrn. For instance,
the Dyck path UUUUDDDD would produce π = 4123 /∈ Irr4, then applying the
described process, the permutation σ = 4321 ∈ Irr4 is obtained. Finally, the result is
obtained since the set of Dyck paths with no occurrence of UDUD is enumerated by
the sequence A078481 in [18] (see [17]). 2

Theorem 4 The sets I∼ℓ

n , n ≥ 1, are enumerated by the Motzkin numbers (A001006
in [18]).

Proof. We will show that each equivalence class contains a unique involution that
avoids the pattern 4321 (see A001006 in [18] and [6] for the enumeration of In(4321) by
Motzkin numbers). Let π be an involution in In. If there exists a position i, i < πi, such
that i is not a left-to-right maximum, then there is j ∈ [n] such that j < i < πi < πj

which means that π contains the pattern 4321. So, we define the involution σ satisfying
L(π) = L(σ) and verifying the additional conditions σi = i whenever i /∈ L(π). By
construction, σ avoids the pattern 4321 and belongs to the same class of π. Conversely,
let σ be an involution avoiding the pattern 4321. Then, the inequality j < i < σi < σj ,
i, j ∈ [n] does not occur. Therefore, if i /∈ L(σ), then i is necessarily a fixed point.
Therefore, there is a unique involution σ ∈ In(4321) having L(σ) as set of left-to-right
maxima. 2

Theorem 5 The sets C∼ℓ

n , n ≥ 1, are enumerated by the Catalan numbers (A000108
in [18]).

Proof. Any permutation π ∈ Sn−1 can uniquely be decomposed as a product of trans-
positions

π = 〈p1, 1〉 · 〈p2, 2〉 · · · 〈pn−1, n− 1〉

where pi are some integers such that 1 ≤ pi ≤ i ≤ n− 1 (see for instance [1]).
Let φ be the map from Sn−1 to Sn defined, for every π ∈ Sn−1, by

φ(π) = 〈1, 1〉 · 〈p1, 2〉 · · · 〈pn−1, n〉

where π = 〈p1, 1〉 · 〈p2, 2〉 · · · 〈pn−1, n− 1〉.
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Using Corollary 1 in [1], φ is a bijection from Sn−1 to Cn satisfying L(π) = L(φ(π))
for any π ∈ Sn and such that φ(π)(k) = π(k) + 1 for k ∈ L(π). Therefore, φ induces a
bijection from S∼ℓ

n−1 to C∼ℓ

n . With Theorem 1, the cardinality of C∼ℓ

n is the (n − 1)-th
Catalan number. 2

Set Sequence Sloane an, 1 ≤ n ≤ 9

S∼ℓ

n Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862

C∼ℓ

n Catalan A000108 1, 1, 2, 5, 14, 42, 132, 429, 1430

I∼ℓ

n Motzkin A001006 1, 2, 4, 9, 21, 51, 127, 323, 835

D∼ℓ

n Fine A000957 0, 1, 2, 6, 18, 57, 186, 622, 2120

Irr∼ℓ

n Dyck with no UDUD A078481 1, 1, 3, 7, 19, 53, 153, 453, 1367

Table 1: Number of equivalence classes for classical subsets of permutations.

2.2 Equivalence classes for Sn(α)
∼ℓ with α ∈ S3

In this part we give several enumerating results for the sets Sn(α)
∼ℓ where the pattern

α lies in S3 (see Table 2).
Theorem 1 proves that Sn(321)

∼ℓ is enumerated by the nth Catalan number. Let
φ be the bijection from Sn(321) to Sn(312) described (modulo a basic symmetry) in
[3] (Lemma 4.3, page 148). It has the property to leave all left-to-right maxima fixed.
Therefore, it induces a bijection from Sn(321)

∼ℓ to Sn(312)
∼ℓ.

Now, let us examine the cases where the pattern α belongs to {123, 132, 213, 231}.

Theorem 6 The sets Sn(123)
∼ℓ, n ≥ 1, are enumerated by the central polygonal num-

bers 1 + n(n−1)
2

(A000124 in [18]).

Proof. Let π be a permutation in Sn(123). It is straightforward to see that the left-
to-right maxima of π are 1 and i where πi = n for some i, 1 ≤ i ≤ n. We necessarily
have i − 1 ≤ π1 because the condition π1 < πj < n implies j < i. Since the values i
and j, 1 ≤ i, j ≤ n, characterize a class in Sn(123)

∼ℓ, it follows that the cardinality of

Sn(123)
∼ℓ is given by 1 +

n
∑

i=2

n−1
∑

j=i−1

1 = 1 + n(n−1)
2

. 2

Theorem 7 For α ∈ {132, 213, 231}, the sets Sn(α)
∼ℓ, n ≥ 1, are enumerated by the

binary numbers 2n−1.
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Proof. Let π be a permutation in Sn(231). It can be written π = σnγ where σ ∈ Sk(231)
for some k, 0 ≤ k ≤ n − 1, and γ is obtained from a permutation in Sn−k−1(231) by
adding k on all these entries. Therefore, the set L(π) of left-to-right maxima of π is
the union of {k + 1} with the set L(σ) of left-to-right maxima of σ. For n ≥ 1, let an

be the cardinality of Sn(231)
∼ℓ . Varying k from 0 to n − 1, we have an = 1 +

n−1
∑

k=1

ak

anchored with a1 = 1. Thus, we deduce an = 2n−1 for n ≥ 1.
Basic symmetries on permutations allow to obtain the result whenever α lies in

{132, 312}. 2

Pattern Sequence Sloane an, 1 ≤ n ≤ 9

{123} Central polygonal A000124 1, 2, 4, 7, 11, 16, 22, 29, 37

{312}, {321} Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862

{132}, {213}, {231} Binary A000079 1, 2, 4, 8, 16, 32, 64, 128, 256

Table 2: Number of equivalence classes for permutations avoiding one pattern in S3.

3 Enumeration of classes under d-equivalence rela-

tion

In this section two permutations π and σ belong to a same class whenever DD(π) =
DD(σ), i.e., if the set of pairs (πi, πi+1) for i ∈ D(π) is equal to the set of pairs (σi, σi+1)
for i ∈ D(σ).

A partition Π of [n] is any collection of non-empty pairwise disjoint subsets, called
blocks, whose union is [n]. The standard form of Π is Π = B1/B2/ . . ., where the blocks
Bi are arranged so that their smallest elements are in increasing order. For convenience,
we assume also that elements in a same block are arranged in decreasing order. From
a permutation π ∈ Sn, we associate the unique partition Π defined as follows. Two
elements x > y belong to the same block in Π if and only if there exist i and j, i < j,
such that πi = x > πi+1 > · · · > πj−1 > πj = y. Conversely, any partition Π = B1/B2/
. . . /Bk, k ≥ 1, is the associated to the permutation B1B2 . . . Bk. Theorem 8 becomes
a straightforward consequence.

Theorem 8 The sets S∼d

n , n ≥ 1, are enumerated by the Bell numbers (A000110 in
[18]).

7



Theorem 9 The sets Sn(321)
∼d, n ≥ 1, are enumerated by the Motzkin numbers

(A001006 in [18]).

Proof. Let π ∈ Sn(321) and DD(π) = {(M1, m1), (M2, m2), . . . , (Mr, mr)}, r ≥ 0,
be the set of pairs (πi, πi+1) where i is a descent of π. Since π avoids 321, DD(π)
does not contain two pairs of the form (πi, πi+1) and (πi+1, πi+2). Then, we define the
involution σ ∈ In as follows: σ(Mi) = mi, σ(mi) = Mi for 1 ≤ i ≤ r and σ(k) = k
if k does not appear in any pair of DD(π). For a contradiction, let us assume that σ
contains a pattern 4321. Then there exist two pairs (Mi, mi) and (Mj, mj) in DD(π)
such that Mi > Mj > mj > mi. If the descent (Mi, mi) is on the left (in π) of the
descent (Mj , mj), then the subsequence MiMjmj is a pattern 321 of π; otherwise, the
subsequence Mjmjmi also is a 321-pattern. In the two cases we obtain a contradiction,
which ensures that the involution σ avoids the pattern 4321.

Conversely, let σ be an involution avoiding the pattern 4321. There exists a sequence
of pairs (M1, m1), . . . , (Mr, mr), r ≥ 0, such that Mi < Mi+1, mi < mi+1 for i ≤ r − 1
and such that Mi > mi, σ(Mi) = mi and σ(mi) = Mi for i ≤ r and σ(k) = k for
k ∈ [n]\{M1, . . . ,Mr, m1, . . . , mr}. We define the permutation π with the following
process. We start with the sequence M1m1M2m2 . . .Mrmr; we insert in increasing
order all other values k satisfying σ(k) = k as follows: if mi−1 < k < mi then we insert
k between mi−1 and Mi; if k < m1 then we insert k before M1; and if k ≥ mr then we
insert k after mr. Obviously, this construction induces that π avoids 321. Moreover, σ
can be obtained from π by the construction of the beginning of this proof. Thus, there
is a bijection between Sn(321)

∼d and In(4321) which is enumerated by the Motzkin
numbers (see A001006 in [18] and [6]). 2

Lemma 1 Let π and π′ be two permutations in Sn(132) belonging to the same d-
equivalence class. If we have π1 = π′

1 then π = π′.

Proof. We proceed by induction on n. A simple observation gives the result for n ≤ 3.
Now, let us assume that Lemma 1 is true for k ≤ n−1. Let π and π′ be two permutations
in Sn(132) such that π1 = π′

1. We can write π = αnβ (resp. π′ = α′nβ ′) where
β ∈ Sk(132) for some k, 0 ≤ k ≤ n−1 (resp. β ′ ∈ Sk′(132) for some k′, 0 ≤ k′ ≤ n−1),
and α (resp. α′) is obtained from a permutation in Sn−k−1(132) (resp. Sn−k′−1(132))
by adding k (resp. k′) on all these entries. Let m (resp. m′) be the minimal value of α
(resp. α′).

Without loss of generality, we assume that m′ ≤ m ≤ π1 = π′

1. For a contradiction,
assume that m′ < m. So, there is two consecutive entries a and m′ in α′ such that
a > m′. As m′ < m, the descent (a,m′) does not appear in α. Thus, (a,m′) appears
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in β. Let α1 be the first value of α; the subsequence α1am
′ is necessarily a pattern

132 which is a contradiction. Thus, we have m = m′ and then k = k′. We deduce α
and α′ (resp. β and β ′) are d-equivalent and the recurrence hypothesis gives α = α′.
Moreover the descent (n, β1) is equal to the descent (n, β ′

1) and then β1 = β ′

1. Using
the recurrence hypothesis we conclude β = β ′ and then, π = π′. 2

Theorem 10 The sets Sn(132)
∼d, n ≥ 1, are enumerated by cn − cn−1 + 1 where

cn = 1
n+1

(

2n
n

)

is the n-th Catalan number.

Proof. Let an be the cardinality of Sn(132)
∼d. We distinguish three kinds of classes:

(1) classes with a representative π satisfying π1 = n; (2) classes with a representative
π satisfying πn = n; (3) the remaining classes.
Case (1). Such a class contains a permutation π such that π1 = n, i.e., π = nπ′ with
π′ ∈ Sn−1(132). Using Lemma 1, there is a unique σ = π′ ∈ Sn−1(132) such that nσ
and π belong to the same class. Thus, the number of classes in this case is also the
cardinality of Sn−1(132), that is the (n− 1)-th Catalan number cn−1.
Case (2). Such a class contains a permutation π such that πn = n. So, the number of
classes in this case is also the number of elements in Sn−1(132)

∼d, that is an−1.
Case (3). Now we consider the classes that do not lie in the two previous cases. Any
permutation π of such a class satisfies πi = n for some i ∈ [2, n− 1], and since π avoids
132, π can be written π = αnβ where β ∈ Sn−i(132) and α is obtained by adding (n−i)
on all entries of a permutation in Si−1(132).

Let us consider j, 1 ≤ j ≤ i− 1, the position where α reaches its minimum m.
If j = 1 then π = (n − i + 1) . . . (n − 1)nβ and this permutation lies in the same

class of nβ(n− i+ 1) . . . (n− 1) that satisfies Case (1). Then, j = 1 does not occur.
Now we assume j ≥ 2 and let σ be a permutation in Sn(132) lying in the same

class of π. Then, σ must contain the two descents (n, πi+1) and (πj−1, m). These two
descents necessarily appear in the same order as in π (otherwise, a pattern 132 would
be created with πi+1πj−1m). Thus, the minimum m′ of values on the left of n in σ
is necessarily less or equal to m. For a contradiction, let us assume that m′ < m.
The value m′ appears necessarily on the right of the descent (πj−1, m) in σ (otherwise,
m′πj−1m would be a pattern 132). Therefore, a descent of the form (a, b), a ≥ m and
b < m would necessarily exists in σ, which is not possible because such a descent cannot
belong in π.

Thus, we deduce m = m′ and σ has the similar decomposition σ = α′nβ ′ where
β ′ ∈ Sn−i(132) and α′ is obtained by adding (n− i) on all entries of some permutation
in Si−1(132). So, α (resp. β) is equivalent to α′ (resp. β ′). Hence, Lemma 1 implies that
β = β ′. Then, for a given i ∈ [2, n−1], there are exactly cn−i ·(ai−1−1) classes verifying
this case (we subtract one to ai−1 because we do not consider π = (n− i+ 1) . . . nβ).
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So, such classes are enumerated by
n−1
∑

k=2

(ak−1 − 1) · cn−k.

Considering the three cases, the cardinality an of Sn(132)
∼d satisfies for n ≥ 2,

an = cn−1 + an−1 +
n−1
∑

k=2

(ak−1 − 1) · cn−k.

A simple calculation proves that an = cn − cn−1 + 1 for n ≥ 2. 2

Theorem 11 The sets Sn(123)
∼d, n ≥ 2, are enumerated by cn + n− (n+ 2) · 2n−3 +

(n−2)(n−1)
2

where cn = 1
n+1

(

2n
n

)

is the n-th Catalan number.

Proof. Let π be a permutation in Sn(123). Then π has a unique decomposition into
blocks of decreasing sequences, i.e., π = A1A2 . . . Ar, 1 ≤ i ≤ r, where blocks Ai consist
of sequences of decreasing values (possibly reduced to one value) and such that ℓi < fi+1

for 1 ≤ i ≤ r − 1, where fi (resp. ℓi) is the first (resp. last) element of Ai.
We distinguish three cases (1) r = 1; (2) r = 2; and (3) r ≥ 3.

Case (1). We necessarily have π = n(n − 1) . . . 21 and its equivalence class contains
only one element.
Case (2). We have π = A1A2 with ℓ1 < f2. (i) If f1 < ℓ2 then the class of π contains
only one element since the permutation σ = A2A1 is not there. Therefore, there are
(n − 1) such classes. (ii) If f1 > ℓ2 then the class of π contains exactly two elements
π and σ = A2A1. Since the number of permutations of length n with n − 2 descents
is 2n − (n + 1), the number of classes for the subcase (ii) is 2n−(n+1)−(n−1)

2
= 2n−1 − n.

Finally, there are 2n−1 − n+ n− 1 = 2n−1 − 1 classes for Case (2).
Case (3). π contains at least three blocks. We decompose π = A1BAr where B =
A2 . . . Ar−1, r ≥ 3, such that f2 = n, ℓr−1 = 1 with A1 and Ar possibly empty.

Let σ be a permutation in Sn(123) belonging to the class of π. We will prove that
σ is either π or ArBA1.

For this, we will prove that the block B also appears in σ. It is obvious whenever
B is a decreasing sequence. Now, let us assume that B is the concatenation of at least
two blocks, that is B = A2 . . . Ar−1 with r ≥ 4.

(i) For a contradiction, we suppose that there exist i and j, 2 ≤ i < j ≤ r − 1 such
that Ai appears on the right of Aj into σ, i.e., σ = αAjβAiγ for some α, β, γ possibly
empty. Since σ avoids 123 and fj < fi, α does not contain any value a such that a < fj
(otherwise afjfi would be a pattern 123). Also, α does not contain any value a such
that a > fj (otherwise there would be b ≤ a such that (b, fj) is descent in σ that does
not appear in π). Thus α is necessarily empty. By a simple symmetry , γ is also empty.
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This implies that all other blocks of π appear between the two blocks Aj and Ai in σ.
Thus, all other blocks consist of values a such that a ∈ [1, ℓj − 1]∪ [fi +1, n] (otherwise
ℓjafi would be a pattern 123). Since π contains at least three blocks there is at least
one block between Aj and Ai in σ.

The case ℓj = 1 does not occur. Indeed, this would mean that all blocks between
Aj and Ai contain values x greater than fi which creates a descent of the form (x, fi)
that does not appear in π. A similar argument proves that fi = n does not occur.

Let us consider the case where n and 1 do not appear in Ai and Aj. Since B contains
at least two blocks, n and 1 do not appear in the same block in B. Let R (resp. S)
be the block containing n (resp. 1). In σ, the last element ℓ(R) of R is necessarily
less than ℓj (otherwise σ would contain a pattern 123, that is ℓjℓ(R)x where x is the
value just after ℓ(R) in σ). A same argument shows that the first element f(S) of S
is greater than fi. In π, this would mean that ℓ(R)ℓif(S) is a pattern 123 which is a
contradiction. Finally, all blocks of B appear in σ in the same order as π.

(ii) Now we will prove that A1 does not appear between A2 and Ar−1 in σ. For
a contradiction, let us assume that A1 appears between A2 and Ar−1 in σ. Let a be
the value of σ just after the block A1. If a < ℓ1 then σ contains the descent (ℓ1, a)
that does not appear in π; otherwise, ℓ2ℓ1a would be a pattern 123 in σ which gives a
contradiction. A same argument proves that Ar does not appear between A2 and Ar−1

in σ.
Therefore, we deduce that either σ = π or σ = ArBA1.
Now we will enumerate permutations π ∈ Sn(123) of Case (3) such that there is

σ ∈ Sn(123), σ 6= π, belonging to the same class of π, i.e., A1BAr and ArBA1 do
not contain any pattern 123. This case is characterized by the fact that there is no
value a in the block B such that min {ℓ1, ℓr} < a < max {f1, fr} (otherwise, one of the
two permutations A1BAr, ArBA1 would contain the pattern 123). See Figure 1 for a
graphical representation of such a permutation.

Figure 2: Illustration of π = A1BAr ∈ Sn(123) having two elements in its class.
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If B contains only one block, A1 and Ar are non-empty blocks. Varying the size k of
B from 2 to n−2, and the size ℓ of A1 from 1 to n−k−1, the number of permutations

having two elements in its class is an =
n−2
∑

k=2

(k − 1) ·
n−k−1
∑

ℓ=1

(

n−k

ℓ

)

.

If B contains at least two blocks, A1 and Ar are blocks (possibly empty). Varying
the size k of B from 4 to n−1 and varying the size ℓ of A1 from 0 to n−k, the number

of permutations having two elements in its class is bn =
n−1
∑

k=4

(2k−2 − (k − 1)) ·
n−k
∑

ℓ=0

(

n−k

ℓ

)

.

Finally, the number of classes in Sn(123) is obtained from cn by subtracting the
number of classes having two elements, that is cn − 1

2
(2n − 2n + an + bn) = cn − (n +

2) · 2n−3 + n(n−1)
2

+ 1. 2

Pattern Sequence Sloane an, 1 ≤ n ≤ 9

{} Bell A000110 1, 2, 5, 15, 52, 203, 877, 4140, 21147

{231}, {312} Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862

{321} Motzkin A001006 1, 2, 4, 9, 21, 51, 127, 323, 835

{132}, {213} cn − cn−1 + 1 New 1, 2, 4, 10, 29, 91, 298, 1002, 3433

{123} cn − (n+ 2) · 2n−3 + n(n−1)
2

+ 1 New 1, 2, 4, 9, 25, 84, 307, 1139, 4195

Table 3: Number of equivalence classes for permutations avoiding at most one pattern
of S3.
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