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Abstract

There remains today an open problem whether the rotation distance between binary trees or equivalently the diagonal-flip
distance between triangulations can be computed in polynomial time. We present an efficient algorithm for computing lower and
upper bounds of this distance between a pair of triangulations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Culik and Wood defined in 1982 the rotation dis-
tance between a pair of binary trees as the minimum
number of rotations needed to convert one tree into the
other [5]. There exists a well-known explicit bijection
between binary trees and triangulations. Thus a system
that is isomorphic to binary trees related by rotations
is that of triangulations of a convex polygon related by
the diagonal-flip transformation. A diagonal-flip trans-
formation is an operation that converts one triangulation
into another by removing a diagonal in the triangulation
and adding the diagonal that subdivides the resulting
quadrilateral in the opposite way. Thus rotation distance
of binary trees and diagonal-flip distance of triangula-
tions are equivalent.
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An open problem is the complexity status of com-
puting the rotation distance between two binary trees
or equivalently the diagonal-flip distance between two
triangulations. Lucas has presented a quadratic time al-
gorithm for computing the rotation distance between
binary trees of restricted form [8]. But in the general
case, there remains the open problem whether these dis-
tances can be computed in polynomial time.

Some upper bounds of these distances have been ex-
hibited [6,9,14]. Some authors approach the problem by
limiting the reshaping primitive to a restricted version of
the general rotation operation [1–4,7,13,16]. Obviously
these restricted rotation distances will be bounded be-
low by the usual rotation distance. Another approach for
computing an upper bound uses a “flexion” operation on
binary trees [12].

In [11], a rough lower bound of the rotation distance
is computed using ordinal tools. But to our knowledge,
efficient lower bounds are not found in literature.

In this paper we present a polynomial time algorithm
for computing lower and upper bounds. Computer ex-
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Fig. 1. A diagonal flip in T8.

periments show that these bounds are efficient. For sim-
plification reasons, we prefer stating our results in terms
of triangulations rather than binary trees.

2. Notations and definitions

Let us consider n-gons, i.e., convex polygons with n

sides and with a distinguished side as the top. We la-
bel the vertices from 0 to n − 1 counterclockwise such
that the top has 0 and n − 1 as two vertices. Any tri-
angulation of the n-gon has n − 2 triangles and n − 3
non-crossing diagonals. Let Tn denote the set of trian-
gulations of the n-gon. There is an explicit bijection
between Tn and the set of binary trees with n−2 internal
nodes (and thus n− 1 leaves) [12,17]. The diagonal-flip
operation on Tn is defined as follows. A diagonal inside
the polygon is removed, creating a face with four sides.
The opposite diagonal of this quadrilateral is inserted in
place of the one removed, restoring the diagram to a tri-
angulation of the polygon [17]. See Fig. 1. If T ,S ∈ Tn,
let dist(T ,S) be the minimum number of diagonal-flips
needed to transform T into S.

The internal degree di(T ) of a vertex i of T ∈ Tn is
the number of diagonals incident to i (0 � i � n−1). In
a pair (T ,S) of triangulations of Tn, the composite de-
gree cdi (T , S) is the total number of diagonals incident
to vertex i in both triangulations. If T ,S ∈ Tn have a
diagonal {i, j} in common, we say that {i, j} is a (2,2)-
diagonal if cdi (T , S) = cdj (T , S) = 2. Given two trian-
gulations of Tn, a flip-to-match diagonal is a diagonal in
one of the triangulations which can be flipped to make
it match a diagonal in the other [15]. Given T ,S ∈ Tn,
we define the type of vertex i by typei (T , S) = (k : l)

where k = di(T ) and l = di(S).

Definition 1. [17] Given T ∈ Tn, we define the normal-
ized triangulation NT (i, j) (respectively N ′

T (i, j)) with
respect to the diagonal {i, j} as follows:

(1) NT (i, j) and N ′ (i, j) contain the diagonal {i, j};
T
(2) NT (i, j) and N ′
T (i, j) contain every diagonal of T

that does not cross the diagonal {i, j};
(3) if T contains a diagonal {a, b} that crosses the di-

agonal {i, j}, then NT (i, j) (respectively N ′
T (i, j))

contains the diagonals {a, j} and {b, j} (respec-
tively {a, i} and {b, i}).

Definition 2. In case where j = i +2 mod n, we say that
NT (i, i + 2) (respectively N ′

T (i, i + 2)) is the counter-
clockwise (respectively clockwise) normalization with
respect to the vertex i + 1 and we denote NT (i, i + 2) =
NT (i + 1) (respectively N ′

T (i, i + 2) = N ′
T (i + 1)).

Definition 3. Let {i, j} be a diagonal of T ∈ Tn such that
di(T ) = dj (T ) = 2. Then T can be double-normalized
with respect to the diagonal {i, j} to create a new trian-
gulation N ′′

T (i, j) as follows:

(1) we flip in T the diagonal {i, j},
(2) then we flip the diagonal adjacent to vertex i,
(3) and we flip the diagonal adjacent to vertex j .

Definition 4. Let i be a vertex of T ∈ Tn such that
di(T ) = 3. We denote {a, i}, {b, i} and {c, i} the three
diagonals incident to vertex i with the vertices a, b, c

in clockwise order. Then T can be pseudo-normalized
with respect to vertex i to create a new triangulation
N ′′′

T (i) as follows: we flip the two diagonals {a, i} and
{c, i}, then we flip the middle diagonal {b, i}.

It is worth noting that each of these normaliza-
tions creates at least one diagonal of the form {i − 1,

i + 1} mod n. Then the edges {i − 1, i} and {i, i + 1}
will be “nibbled” away by the algorithm of Section 8.

3. Preliminaries

Lemma 1. [17] Given T ,S ∈ Tn, if it is possible to flip
one diagonal of T creating T1 so that T1 has one more
diagonal in common with S than does T , then there ex-
ists a shortest path from T to S in which the first flip
creates T1.

Lemma 2. [17] Given T ,S ∈ Tn, if T and S have a di-
agonal in common, then a shortest path from T to S

never flips this diagonal.

Lemma 3. [8,17] If T ,S ∈ Tn share a common diag-
onal, this diagonal splits T (respectively S) into two
subtriangulations T ′ and T ′′ (respectively S′ and S′′)
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Fig. 2. Four normalizations of T ∈ T6.
in such a way that T ′ and S′ (and thus T ′′ and S′′) have
the same vertices. Then we have the following formula:

dist(T ,S) = dist(T ′, S′) + dist(T ′′, S′′).

Lemma 4. If T ,S ∈ Tn, then there exists a vertex i such
that cdi (T , S) � 3.

Proof. Let us consider the graph which is obtained by
matching T and S. We have

∑n
i=1 cdi (T , S) = 4(n−3).

Thus the average verifies the inequality

1

n

n∑

i=1

cdi (T , S) = 4(n − 3)

n
< 4

and there exists at least a vertex i such that cdi (T , S) �
3. �

According to Lemma 4, we study in the sequel the
different types of vertices which can occur, i.e. (2 : 0),
(1 : 1), (3 : 0) and (2 : 1). The case (1 : 0) is a particular
case of Lemma 1.

It is important to notice that, in Sections 4–7 below,
we assume that the hypotheses of Lemmas 1 and 2 are
not verified.

4. Properties of vertices of type (2 : 0)

Lemma 5. Given T ,S ∈ Tn with a vertex i such that
typei (T , S) = (2 : 0), there exists a shortest path from T

to S in which the two first flips create either NT (i) or
N ′

T (i).

Proof. Let P : T = T0, T1, T2, . . . , Tp = S be a short-
est path connecting T and S in which Tl and Tl+1 differ
only by one flip. Since di(S) = 0, S contains the diago-
nal {i −1, i +1} mod n. Necessarily there exist in P two
pairs (Tj , Tj+1) and (Tk, Tk+1) such that di(Tj ) = 2,
di(Tj+1) = 1, di(Tk) = 1 and di(Tk+1) = 0. There are
two cases to consider:

Case 1: di+1(Tj+1) > di+1(Tj ). Then we have
NTj

(i) = NT (i) and NTk
(i) = NT (i). Consider the
j+1 k+1
sequence of triangulations: NP (i) : NT (i) = NT0(i),

NT1(i),NT2(i), . . . ,NTp(i) = NS(i). Successive trian-
gulations of NP (i) are either identical or differ only by
one flip. The length of NP (i) is at most p − 2. Since
dist(T ,NT (i)) = 2, we have built a new shortest path
from T to S which contains NT (i).

Case 2: di−1(Tj+1) > di−1(Tj ). Then we have
N ′

Tj
(i) = N ′

Tj+1
(i) and N ′

Tk
(i) = N ′

Tk+1
(i). The proof

concludes mutatis mutandis. �
Theorem 1. Given T ,S ∈ Tn with a vertex i such that
typei (T , S) = (2 : 0), then we have:

dist(T ,S) = min
(
dist

(
NT (i), S

)
,dist

(
N ′

T (i), S
)) + 2

and

dist(T ,S) � max
(
dist

(
NT (i), S

)
,dist

(
N ′

T (i), S
)) + 1.

Proof. The equality is a straightforward consequence
of Lemma 5. It is worth noting that dist(NT (i),N ′

T (i))

= 1. Thus

dist(T ,S)

� min
(
dist

(
NT (i), S

)
,dist

(
NT (i), S

) − 1
) + 2

= dist
(
NT (i), S

) + 1

and

dist(T ,S) � dist
(
N ′

T (i), S
) + 1

by symmetry. �
Theorem 2. Given T ,S ∈ Tn with a (2,2)-diagonal
{i, j} such that dT (i) = 2, dS(i) = 0, dT (j) = 2 and
dS(j) = 0, we have:

dist(T ,S) = dist
(
N ′′

T (i, j), S
) + 3.

Proof. According to Theorem 1: dist(T ,S) = 2 +
min(dist(NT (i), S),dist(N ′

T (i), S)). Thus there are two
cases to consider (see Fig. 3):

Case 1: dj (NT (i)) = 1. Then we have: dist(NT (i), S)

= dist(N ′′(i, j), S)+1 and dist(N ′ (i), S) � dist(N ′′(i,
T T T
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Fig. 3. Illustration of the proof of Theorem 2. A simple line is for
distance one and a double line for distance two.

j), S) + 1. Thus there is a shortest path from T to S

which contains N ′′
T (i, j).

Case 2: dj (N
′
T (i)) = 1. Then we have dist(N ′

T (i), S)

= dist(N ′′
T (i, j), S)+1 and dist(NT (i), S) � dist(N ′′

T (i,

j), S) + 1 proving that there exists a shortest path from
T to S which contains N ′′

T (i, j).
The proof concludes with dist(T ,N ′′

T (i, j)) = 3. �
5. Properties of vertices of type (1 : 1)

Theorem 3. Given T ,S ∈ Tn with a vertex i such that
typei (T , S) = (1 : 1) then the following inequalities
hold:

dist
(
NT (i),NS(i)

) + 1

� dist(T ,S)

� dist
(
NT (i),NS(i)

) + 2.

Proof. Let P : T = T0, T1, T2, . . . , Tp = S be a shortest
path connecting T and S in which Tl and Tl+1 differ
only by one flip. Let us consider the path: T = T0,

NT0(i),NT1(i),NT2(i), . . . ,NTp(i), Tp = S of length
p + 2. Two successive trees differ only by one flip,
proving the right inequality. Since typei (T , S) = (1 : 1),
di(T ) = di(S) = 1, there are two cases to consider:

Case 1: there exists in P a tree Tq such that di(Tq) =
0. Thus {i − 1, i + 1} mod n is a diagonal of Tq . By
Lemma 1, there exists a shortest path connecting T

and Tq which contains NT (i). Similarly there exists
a shortest path connecting Tq and S which contains
NS(i). We obtain dist(T ,S) = dist(NT (i),NS(i))+2 >

dist(NT (i),NS(i)) + 1.
Case 2: there exists in P a tree Tr such that di(Tr) =

1 and di(Tr+1) = 2. We necessarily have either NTr (i) =
NTr+1(i) or N ′
Tr

(i) = N ′
Tr+1

(i). In the first case, the
length of the path NP (i) : NT (i),NT1(i),NT2(i), . . . ,

NS(i) connecting NT (i) and NS(i) is p − 1, proving
dist(NT (i),NS(i)) � dist(T ,S) − 1. The second case is
similar, thus completing the proof of the left inequal-
ity. �
6. Properties of vertices of type (3 : 0)

Theorem 4. Given T ,S ∈ Tn with a vertex i such that
typei (T , S) = (3 : 0) then the following inequalities
hold:

dist
(
N ′′′

T (i), S
) + 1 � dist(T ,S)

� dist
(
N ′′′

T (i), S
) + 3.

Proof. The right inequality follows trivially from
dist(T ,N ′′′

T (i)) = 3. Let P : T = T0, T1, T2, . . . , Tp = S

be a shortest path connecting T and S in which Tl

and Tl+1 differ only by one flip. Since di(T ) = 3
and di(S) = 0, necessarily there exist in P three pairs
of trees (Tq, Tq+1), (Tr , Tr+1), (Ts, Ts+1) such that
di(Tq) = 3, di(Tq+1) = 2, di(Tr ) = 2, di(Tr+1) = 1,
di(Ts) = 1, di(Ts+1) = 0. We have either NTr (i) =
NTr+1(i) or N ′

Tr
(i) = N ′

Tr+1
(i). But we have NTs (i) =

NTs+1(i) and N ′
Ts

(i) = N ′
Ts+1

(i). There are two cases to
consider:

Case 1: there exist u,v ∈ {q, r, s} with u �= v such
that NTu(i) = NTu+1(i) and NTv (i) = NTv+1(i). Let
us consider the path NP (i) : NT (i) = NT0(i),NT1(i),

NT2(i), . . . ,NTp(i) = NS(i) = S connecting NT (i)

and S. Indeed NS(i) = S since di(S) = 0. The length of
NP (i) is p − 2 proving dist(NT (i), S)+ 2 � dist(T ,S).

Case 2: there exist u′, v′ ∈ {q, r, s} with u′ �= v′ such
that N ′

Tu′ (i) = N ′
Tu′+1

(i) and N ′
Tv′ (i) = N ′

Tv′+1
(i). Simi-

larly dist(N ′
T (i), S) + 2 � dist(T ,S) holds.

It is enough to observe that dist(NT (i),N ′′′
T (i)) = 1

and dist(N ′
T (i),N ′′′

T (i)) = 1. In particular we deduce
dist(N ′′′

T (i), S) � 1 + dist(NT (i), S) � 1 + dist(T ,S) −
2 proving the left inequality. �
7. Properties of vertices of type (2 : 1)

Theorem 5. Given T ,S ∈ Tn with a vertex i such that
typei (T , S) = (2 : 1) then the following inequalities
hold:

dist(T ,S)

� max
(
dist

(
NT (i),NS(i)

)
,dist

(
N ′

T (i),N ′
S(i)

)) + 1,

dist(T ,S)

� min
(
dist

(
NT (i),NS(i)

)
,dist

(
N ′

T (i),N ′
S(i)

)) + 3.
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Proof. Since di(T ) = 2 and di(S) = 1, we have dist(T ,

NT (i)) = 2 and dist(S,NS(i)) = 1 proving the sec-
ond inequality. For proving the first inequality, let
P : T = T0, T1, T2, . . . , Tp = S be a shortest path con-
necting T and S in which two consecutive trees dif-
fer only by one flip. We denote {i, a} and {i, b} the
two diagonals of T incident to vertex i with a and
b in clockwise order. Now let f � 1 be the small-
est s ∈ [1,p] such that the diagonal {i, a} is not the
first diagonal (in clockwise order) adjacent to i in Ts .
Similarly let � � 1 be the smallest r ∈ [1,p] such that
the diagonal {i, b} is not the last diagonal (in clock-
wise order) adjacent to i in Tr . Thus we necessarily
have NTf −1(i) = NTf

(i) and N ′
T�−1

(i) = N ′
T�

(i). There-
fore we obtain dist(NT (i),NS(i)) � dist(T ,S) − 1 and
dist(N ′

T (i),N ′
S(i)) � dist(T ,S) − 1 proving the first in-

equality. �
8. Computing lower and upper bounds

The goal of the following algorithm is to “nibble” the
edges (and consequently the vertices) of the two trian-
gulations by applying Lemma 1 and then Theorems 1–5.
It is necessary to check whether there is a flip-to-match
diagonal first. In this case, the corresponding flip is car-
ried out. Otherwise, the existence of type (1 : 0), (2 : 0),
(1 : 1), (3 : 0) and (2 : 1) diagonals (in this precise or-
der) should be checked. In fact, whatever the order, the
algorithm is correct. However we choose this precise
order for obvious statistical reasons. It will lead statisti-
cally to minimum number of operations.

Now we provide a recursive algorithm (according to
Lemma 4) to find lower and upper bounds (in our algo-
rithm low and up) for the rotation distance between two
triangulations T ,S ∈ Tn. It should be pointed out that,
in this algorithm, trees T , S and therefore types (i : j),
(j : i) play the same role.

Algorithm (Computing low and up)
Given T ,S ∈ Tn

procedure low-up(T ,S,n)

if n � 3 then
if T and S have a common diagonal then

T := (T1, T2); S := (S1, S2);
n1 := size(T1) = size(S1); n2 := size(T2) = size(S2);
low-up(T1, S1, n1);
low-up(T2, S2, n2);

else
if T and S verify Lemma 1 then

flip the diagonal in T or in S

low := low + 1;up := up + 1
low-up(T ,S,n);

else
if T and S have a vertex i of type (2 : 0) then

if T and S have a (2,2)-diagonal {i, j} then
T := N ′′

T (i, j) or S := N ′′
S (i, j)

low := low + 3;up := up + 3
low-up(T ,S,n − 2);

else
T := NT (i) or S := NS(i)

low := low + 1;up := up + 2
low-up(T ,S,n − 1);

else
if T and S have a vertex i of type (1 : 1) then

T := NT (i) and S := NS(i)

low := low + 1;up := up + 2
low-up(T ,S,n − 1);

else
if T and S have a vertex i of type (3 : 0) then

T := N ′′′
T (i) or S := N ′′′

S (i)

low := low + 1;up := up + 3
low-up(T ,S,n − 1);

else T and S have a vertex i of type (2 : 1)

T := NT (i) and S := NS(i)

low := low + 1;up := up + 3
low-up(T ,S,n − 1);

end low-up

Examples. If (T ,S) are the two triangulations ∈ T23 of
Rogers [15, p. 88], then the above algorithm provides
20 � dist(T ,S) � 29. The exact rotation distance is 21.

If (T ,S) are the two triangulations ∈ T20 of Lucas
[8, p. 261], then the above algorithm provides 17 �
dist(T ,S) � 25. The exact rotation distance is 20.

An applet for computing lower and upper bounds is
available on the web site: http://www.u-bourgogne.fr/jl.
baril/titi.html. This applet will choose the better of the
two upper bounds, either the result of this paper, or the
result of [12]. Let us remark that the upper bound pro-
vided in [12] is often, but not necessarily, better than the
upper bound computed in this paper. This applet uses
the coding of binary trees (or equivalently triangula-
tions) by weight sequences [10] and represents triangu-
lations by adjacency matrices. Recall that the adjacency
matrix MT of T is such that MT (i, j) = 1 if the vertices
i and j are connected in T and MT (i, j) = 0 otherwise.
Between two recursive calls we carry out a flip-to-match
diagonal and some computations in order to obtain the
adjacency matrices of T1 and T2 from that of T . This
step requires a time complexity O(n2). Since the tri-
angulations have n − 3 diagonals the time complexity
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is given by
∑n−3

i=1 i2 and thus the time complexity is
O(n3).

9. Computer experiments

We present here some exhaustive and statistical re-
sults. In the first array we obtain exhaustive values for
n � 13 about the ratio of pairs (T ,S) verifying (up −
low) � k with k = 0,1,2, n/2. In the second array we
provide probabilistic results for some n ∈ [14,100] by
generating a random huge number of pairs (T ,S). We
notice that our algorithm gives efficient lower and upper
bounds for large values of n: 99% of pairs (T ,S) have
upper and lower bounds verifying (up − low) � n/3.

Exhaustive results

Table 1

n-gons 5 6 7 8 9 10 11 12 13

Up = Low 100(%) 96 88 78 67 57 47 38 33
Up − Low � 1 100 100 99 99 95 90 82 73 54
Up − Low � 2 100 100 100 100 100 99 96 91 64
Up − Low � n/2 100 100 100 100 100 100 99.9 99.9 99.9

Statistical results

Table 2

n-gons 14 15 16 17 18 20 30 50 100

Up − Low � n/10 81.5 (% ) 77 75 71 69 65 59 45 39
Up − Low � n/5 98 97 97 96 95 95 95 94 93
Up − Low � n/3 99.9 99.9 99.9 99.9 99.8 99.8 99.8 99.7 99.7

Up − Low � n/2 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
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