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Gray code for derangements
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Abstract

We give a Gray code and constant average time generating algorithm for derangements, i.e.,
permutations with no 0xed points. In our Gray code, each derangement is transformed into its
successor either via one or two transpositions or a rotation of three elements. We generalize
these results to permutations with number of 0xed points bounded between two constants.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Various studies have been made on Gray codes and generating algorithms for per-
mutations and their restrictions (with given ups and downs [9,11] or inversions [6,17],
involutions, and 0xed-point free involutions [18]) or their generalizations (multiset per-
mutations [8,16]). See [7,13] for surveys of permutation generation methods.
A length-n derangement (or rencontre or coincidence) is a permutation �∈ Sn with

no 0xed points, i.e., �(i) �= i for all i∈ [n]={1; 2; : : : ; n}. If Dn is the set of all length-n
derangements, then a recurrence relation for dn = card(Dn) is given by

dn = (n − 1)(dn−1 + dn−2) (1)

for n¿ 2, with d1 =0 and d2 =1; see for instance [4, p. 180] or [14, p. 67]. There are
sequential [1] and parallel [2, p. 650] algorithms for generating derangements in lexico-
graphic order. However, we know of no published algorithms for derangements in Gray
code order. Here, we present such an algorithm which is based on the combinatorial
proof of relation (1) above.
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We represent permutations in one-line notation; i.e., � = (i1; i2; : : : ; in) iF �(k) = ik ,
and if 
 = (
1; 
2; : : : ; 
n) is a length-n integer sequence, then 
 · � is the sequence
(
�(1); 
�(2); : : : ; 
�(n)). As a particular case, when 
∈ Sn then 
 ·�∈ Sn is their compo-
sition (or product).
Let i1; i2; : : : ; ik be k diFerent values in [n] = {1; 2; : : : ; n}, 16 k6 n. The cycle

� = 〈i1; i2; : : : ; ik〉 is the following permutation: �(i1) = i2, �(i2) = i3; : : : ; �(ik−1) = ik ,
�(ik)= i1, and �(j)= j for all j �= i‘, 16 ‘6 k. A length-two cycle is a transposition,
and each cycle can be written as a product of transpositions: 〈i1; i2; : : : ; ik〉 = 〈i1; ik〉 ·
〈i1; ik−1〉·: : :·〈i1; i2〉 for k¿ 2. Also, the composition of two cycles with disjoint domains
is commutative, and each permutation is the product of cycles with disjoint domains.
In a permutation 
∈ Sn, transposing the positions i and j corresponds to the product

 · 〈i; j〉 and transposing the values x and y corresponds to the product 〈x; y〉 · 
.
For a length-n integer sequence �=(�(1); �(2); : : : ; �(n)) and a permutation � in Sn,

we say that � is the normal form of � if � is order-isomorphic to �, i.e., �(i)¡�(j)
if and only if �(i)¡�(j) for all 16 i; j6 n. In this case, all the elements of � are
distinct.
In the Gray code we give in the next section, a derangement is obtained from

the previous one via one or two transpositions, and, as a particular case when the
domains of the two transpositions are not disjoint, via a length-three cycle. In Section
3 this code is implemented as a generating algorithm and in Section 4 it is extended
for permutations with a given number of 0xed points and for permutations with the
number of 0xed points between two bounds.
A list L for a set L of integer sequences is an ordered list of the elements of

L. :rst(L) is the 0rst element and last(L) the last element on the list L; L is
the list obtained by reversing L, and obviously :rst(L) = last(L) and :rst(L) =
last(L); L(i) is the list L if i is even, and L if i is odd; if L1 and L2 are
two lists, then L1 ◦ L2 is their concatenation, and generally ©n

i=1Li is the list
L1 ◦L2 ◦ · · · ◦Ln.

2. The Gray code

In this section, 0rst we show how the set Dn can by recursively constructed from
Dn−1 and Dn−2, and then we extend this construction to lists of derangements in order
to obtain a Gray code.
Let � be a length-(n − 1) derangement, n¿ 3, and let i be an integer such that

16 i6 n − 1. If we denote by 
 the permutation in Sn obtained from � by replacing
the entry with value i by n and appending i in the last position, then 
 is a length-n
derangement with n not belonging to a transposition.
Similarly, let � be a length-(n− 2) derangement, n¿ 4, and let i be an integer such

that 16 i6 n − 1. If 
 denotes the permutation in Sn obtained from � by: (1) adding
one to each entry greater than or equal to i, (2) inserting n in position i, and 0nally, (3)
appending i in the last position, then 
 is a length-n derangement with n belonging to
a transposition (the transposition 〈i; n〉). Moreover, each length-n derangement, n¿ 4,
can be uniquely obtained by one of these constructions.
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More formally, for n¿ 0, let D′
n be the set of length-n derangements where n does

not belong to a transposition and D′′
n its complement, i.e., n belongs to a transposition.

Clearly, D′
1 = D′′

1 = D′
2 = ∅, and D2 = D′′

2 is the single derangement list (2; 1); and
D′

n ∪D′′
n is a two-partition of the set Dn of all length-n derangements. The functions �

and  de0ned below give a bijection between [n− 1]×Dn−1 and D′
n on the one hand

and between [n − 1] × Dn−2 and D′′
n on the other.

De�nition 1. (1) For n¿ 3, an integer i∈ [n − 1] and a derangement �∈Dn−1, we
de0ne a length-n permutation 
 = �n(i; �) by


(j) =




n if �(j) = i;

i if j = n;

�(j) otherwise:

(2) For n¿ 4, an integer i∈ [n−1] and a derangement �∈Dn−2, we de0ne a length-n
permutation 
 =  n(i; �) by


(j) =




i if j = n;

n if j = i;

�(j) if j¡ i and �(j)¡i;

�(j) + 1 if j¡ i and �(j)¿ i;

�(j − 1) if j¿ i and �(j − 1)¡i;

�(j − 1) + 1 if j¿ i and �(j − 1)¿ i:

With i and � as above, it is easy to see that

• �n(i; �)∈D′
n and �n : [n − 1] × Dn−1 → D′

n is a bijection; and
•  n(i; �)∈D′′

n and  n : [n − 1] × Dn−2 → D′′
n is a bijection.

So, for dn = card(Dn) we have dn = card(D′
n)+ card(D′′

n )= (n− 1)dn−1 + (n− 1)dn−2

which is a combinatorial proof of (1).
Conversely, we have.

Remark 2. If 
∈Dn, n¿ 4, and i = 
(n), then

(1) if 
(i) �= n (n is not in a transposition in 
) then 
=�n(i; �) with � the permutation
represented by the 0rst n − 1 entries of 〈i; n〉 · 
;

(2) if 
(i) = n (n is in a transposition in 
) then 
 =  n(i; �) with � the permutation
represented by the normal form of the sequence (
(1); 
(2); : : : ; 
(i − 1); 
(i +
1); : : : ; 
(n − 1)).

In the following we will omit the subscript n for the functions � and  , and it should
be clear by context. Also, we extend the functions � and  in a natural way to sets and
lists of derangements. For i∈ [n − 1] and L a list of length-(n − 1) derangements we
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Fig. 1. The list Dn: (a) n is even, (b) n is odd.

have �(i;L)=�(i;L), �(i; :rst(L))=:rst(�(i;L)), and �(i; last(L))=last(�(i;L)).
Similar results hold for the function  .
Let Dn be the list for the set Dn de0ned by

Dn = �(1;Dn−1) ◦  (1;Dn−2);

◦ (2;Dn−2) ◦ �(2;Dn−1);

◦�(3;Dn−1) ◦  (3;Dn−2);

...

=
n−1
©
i=1

(�(i;Dn−1) ◦  (i;Dn−2))(i+1)

(2)

for n¿ 3, anchored by D1 =  (1; ∅) =  (2; ∅) = ∅ and D2 = (2; 1).
In Fig. 1 below, the list Dn is illustrated for even and odd n by a path, where going

down means generating a sublist in direct order and going up means generating it in
reverse order.
Let fn denote the 0rst derangement in the list Dn and ‘n denote the last one. The

following lemma evaluates fn and ‘n for all n.

Lemma 3. If n¿ 3 then

(1) fn = (2; 3; : : : ; n − 1; n; 1);

(2) ‘n =

{
(2; 3; : : : ; n − 2; n; 1; n − 1) if n is odd;

(2; 3; : : : ; n − 2; 1; n; n − 1) if n is even:

Proof. (1) fn = �(1; fn−1), and by the induction hypothesis, fn = �(1; (2; 3; : : : ;
n − 1; 1)) = (2; 3; : : : ; n − 1; n; 1).
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(2) If n is odd, then

‘n = last(�(n − 1;Dn−1) ◦  (n − 1;Dn−2))

= :rst(�(n − 1;Dn−1))

=�(n − 1; fn−1)

= (2; 3; : : : ; n − 2; n; 1; n − 1):

If n is even, then

‘n = last(�(n − 1;Dn−1) ◦  (n − 1;Dn−2))

= last( (n − 1;Dn−2))

=  (n − 1; fn−2)

= (2; 3; : : : ; n − 2; 1; n; n − 1):

Note that fn(j) = ‘n(j) = j + 1 for all j = 1; 2; : : : ; n − 3.
The next lemma ensures a smooth transition between the sublists in relation (2),

namely between: (i) the list  (i;Dn−2) and  (i + 1;Dn−2), with i odd; (ii) the list
�(i;Dn−1) and �(i+1;Dn−1) with i even; and (iii) the list �(i;Dn−1) and  (i;Dn−2),
or equivalently, the list  (i;Dn−2) and �(i;Dn−1). More precisely, successive derange-
ments in Dn diFer either by one or two transpositions or by a circular shift of three
elements (See Table 1 for two examples).

Lemma 4. (i) If n¿ 4 then

 (i + 1; fn−2) =

{
 (i; fn−2) · 〈i − 1; n〉 · 〈i; i + 1〉 if 1¡i6 n − 2;

 (i; fn−2) · 〈1; 2〉 · 〈n − 1; n〉 if i = 1
(3)

Table 1
The lists D4 and D5

D4 D5

1 2341 1 23451 12 35412 23 25413 34 23154
2 3421 2 34251 13 45132 24 54213 35 31254
3 4321 3 43251 14 51432 25 45213 36 21534
4 3412 4 34521 15 41532 26 54123 37 51234
5 3142 5 35421 16 54132 27 51423 38 25134
6 4312 6 43521 17 43152 28 45123 39 53124
7 2413 7 24531 18 31452 29 24153 40 31524
8 4123 8 45231 19 34152 30 41253 41 35124
9 2143 9 25431 20 43512 31 21453 42 53214

10 54231 21 34512 32 41523 43 35214
11 53421 22 53412 33 24513 44 23514

In D5 the sublists �(i;D4) and  (i;D3), in direct or reverse order, for some i, 16 i6 4, are in bold-face
and italic, respectively.
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or, conversely, by reading this relation left-to-right and replacing i by i − 1,

 (i − 1; fn−2) =

{
 (i; fn−2) · 〈i − 2; n〉 · 〈i − 1; i〉 if 2¡i6 n − 1;

 (i; fn−2) · 〈1; 2〉 · 〈n − 1; n〉 if i = 2:
(4)

(ii) If n¿ 3 then

�(i + 1; fn−1) =

{
�(i; fn−1) · 〈n; i; i − 1〉 if 1¡i6 n − 2;

�(i; fn−1) · 〈1; n − 1; n〉 if i = 1
(5)

or, conversely and by replacing i by i − 1,

�(i − 1; fn−1) =

{
�(i; fn−1) · 〈i − 2; i − 1; n〉 if 2¡i6 n − 1;

�(i; fn−1) · 〈n; n − 1; 1〉 if i = 2:
(6)

(iii) If n= 4

 (i; ‘2) =

{
�(i; ‘3) · 〈i; i + 1〉 if i �= 3;

�(i; ‘3) · 〈1; 3〉 if i = 3:
(7)

If n¿ 5

 (i; ‘n−2) =




�(i; ‘n−1) · 〈n − 2; n − 3; 1〉 if i = 1; n even;

�(i; ‘n−1) · 〈1; n − 3; n − 2〉 if i = 1; n odd;

�(i; ‘n−1) · 〈i − 1; i〉 · 〈n − 3; n − 2〉 if 26 i6 n − 4;

�(i; ‘n−1) · 〈n − 2; n − 3; n − 4〉 if i = n − 3;

�(i; ‘n−1) · 〈n − 4; n − 3; n − 1〉 if i = n − 2;

�(i; ‘n−1) · 〈n − 4; n − 2〉 · 〈n − 3; n − 1〉 if i = n − 1; n even;

�(i; ‘n−1) · 〈n − 1; n − 2; n − 4〉 if i = n − 1; n odd;
(8)

or conversely

�(i; ‘n−1) =  (i; ‘n−2) · �−1 (9)

with � the permutation which occurs in the corresponding case in relation (7) or (8).
So, for example, if n¿ 5, i = n − 1 then:

• �(i; ‘n−1)= (i; ‘n−2) · 〈n−4; n−2〉 · 〈n−3; n−1〉 if n is even (in this case �=�−1),
• �(i; ‘n−1) =  (i; ‘n−2) · 〈n − 1; n − 4; n − 2〉 if n is odd.
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Proof. The proof is direct, and consists essentially of checking each case. For brevity,
we do not give the proof of (iii) which is similar to the 0rst two cases.

(i) If 1¡i6 n − 2 then

 (i + 1; fn−2) = (2; : : : ; i − 1; i; i + 2; n; i + 3; : : : ; 1; i + 1);

 (i; fn−2) = (2; : : : ; i − 1; i + 1; n; i + 2; i + 3; : : : ; 1; i)

and if i = 1 then

 (2; fn−2) = (3; n; 4; : : : ; n − 1; 1; 2);

 (1; fn−2) = (n; 3; 4; : : : ; n − 1; 2; 1);

where the little numbers are indices of array elements.
(ii) If 1¡i6 n − 2 then

�(i + 1; fn−1) = (2; : : : ; i − 1; i; n; i + 2; : : : ; 1; i + 1);

�(i; fn−1) = (2; : : : ; i − 1; n; i + 1; i + 2; : : : ; 1; i)

and if i = 1 then,

�(2; fn−1) = (n; 3; : : : ; n − 1; 1; 2);

�(1; fn−1) = (2; 3; : : : ; n − 1; n; 1):

Corollary 5. Successive derangements in Dn di=er at most in four positions.

Note that Dn is a cyclic Gray code.

3. Generating algorithm

The de0nition given by (2) says that Dn is the concatenation of many lists, which
are all similar in some sense to Dn−1 or Dn−2. This result is formalized in Lemma 9
below, and our generating algorithm for Dn is based on it. Now we give some technical
de0nitions.
Two lists are isomorphic if, in the 0rst list, a sequence is transformed into its

successor via the same permutation as the corresponding sequence in the second list
is transformed into its successor; and two lists are similar if after erasing the constant
entries in the 0rst list, and possibly reversing it, the lists become isomorphic. More
formally.

De�nition 6. Let L and S, respectively, be a list of length-n integer sequences and
a list of permutations in Sn. We say that L is isomorphic to S if:

(1) the lists contain the same number of sequences, say p,
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Table 2
A is isomorphic to D4 and B = �(2;D4) is {1; 2; 3; 4}-similar to D4

D4 A B

2341 5341 51432
3421 3451 41532
4321 4351 54132
3412 3415 43152
3142 3145 31452
4312 4315 34152
2413 5413 43512
4123 4153 34512
2143 5143 53412

Note that A is the reverse of the list obtained by erasing the last entry of each sequence in B.

(2) for all 16 j¡p, if 
 (resp. �) is the jth sequence in L (resp. permutation in
S) and 
′ (resp. �′) is its successor in L (resp. S) then 
′ = 
 · �, where � is
such that �′ = � · �.

De�nition 7. For a length-n integer sequence list L, a set T ⊆ [n] with card(T ) =
m6 n, and a length-m permutation list S, we say that L is T -similar to S if:

(1) for all i∈ [n] \ T , the entry in position i has constant value throughout the list L,
(2) after erasing all entries in positions i∈ [n] \T in each sequence in L the obtained

list is isomorphic to S or to S.

In the list L, indices in T and their corresponding entries are called active (relative
to S).

Clearly, if L is isomorphic to S then L is [n]-similar to S. See Table 2 for an
example of isomorphic and similar lists.

Lemma 8. If n¿ 2 then

(1) for 16 i6 n the list �(i;Dn) is {1; 2; : : : ; n}-similar to Dn,
(2) for 16 i6 n+1 the list  (i;Dn) is {1; 2; : : : ; i− 1; i+1; : : : ; n+1}-similar to Dn.

Proof. Clearly, each derangement in �(i;Dn) has its last position, the (n + 1)th one,
equal to i. Consider 
 in �(i;Dn) and � in Dn with 
=�(i; �). Then 
′ =�(i; �′) with

′ and �′ the successor of 
 and �, respectively, and the result holds by considering
the form of � and �′ given in point (1) of Remark 2. (2) This proposition is proved
similarly, by considering the point (2) of Remark 2.

For U ⊂ T ⊆ [n] we say that U is a child-subset (or c-subset) of T if: (1) the
largest element of T is not in U , and (2) 16 card(T \ U )6 2.
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Fig. 2. Generating derangements in Gray code order.

Lemma 9. Let L be a length-n sequence list, T ⊆ [n], and m= card(T )¿ 4. If L is
T -similar to the derangement list Dm then L=L1 ◦L2 ◦ · · · ◦L2(m−1) where each
sublist Lj is Uj-similar to the derangement list Dcard(Uj), with Uj a c-subset of T .

Proof. By Lemma 8 above and applying recursively relation (2).

Obviously, Dn is {1; 2; : : : ; n}-similar to itself and the procedure gen up in Fig.
2 generates the list Dn according to the lemma above: the lists Lj are produced
iteratively, and each of them is generated recursively. So, each call of this procedure
0lls up entries with indices in an active set T ⊆ [n] associated with it, and in a
recursive call T is replaced by a c-subset of T .
In our algorithm, the set T of active indices is represented by four global variables:

the integers head and tail and the arrays succ and pred, de0ned as follows. If at
a computational step T = {i1; i2; : : : ; ik}, then head = i1, tail = ik , succ[ij] = ij+1 and
pred[ij] = ij−1.
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If the active set associated with the current call is T , then the call of gen up(j; t; run)
initiated by the current call generates a sublist that is U -similar to Dj, where

U =

{
T \ {tail} if t = �;

T \ {run; tail} if t =  

(recall that tail=max(T )).
Less formally, gen up(j; �; run) produces a ‘�(i;Dj)-like’ list, and gen up(j;  ; run)

produces a ‘ (i;Dj)-like’ list (see relation (2)), where run is the ith element in the
set T . The call of gen down works as gen up except Dj is replaced by Dj.

For a simpler expression of the generating algorithm we consider initially the active
set T = [n+1], and each call begins by removing tail, the largest element in T . Thus,
before the 0rst call of the generating procedure, the variables which correspond to T
are: head = 1, tail = n + 1, succ[i] = i + 1 for 16 i6 n, and pred[i] = i − 1 for
26 i6 n+ 1. The current derangement is stored in a global variable d, initialized by
d= :rst(Dn).
The main call gen up(n; �; 0) produces the list Dn, n¿ 3, and the value r = 0 is

for convenience; in fact when t = � the value of r is not required. The procedure
which generates the reverse list Dn is called gen down, shown in the appendix, and
essentially executes the statements of gen up in reverse order and replaces the calls of
gen up by gen down and vice versa. Procedures remove(r) and append(r), also shown
in the appendix, remove and append r in the current active set (given by the variables
head, tail, succ and pred).
Between any successive calls at least one update statement is performed, and after

each update statement (including the case n= 3) a new derangement is produced and
printed out. The current derangement d is transformed into its successor according to
relations (3), (5), (7), (8) or (9) in Lemma 4. More precisely, the current derangement
is subject to the transformation given in the appropriate case of Lemma 4, and it acts
on the active indices.
For example, in our algorithm relation (5) becomes:

if i = 1
then d := d · 〈head; pred[tail]; tail〉;
else d := d · 〈tail; run; pred[run]〉;
endif

Clearly, the time complexity of gen up is proportional to the total number of recur-
sive calls. Since each call produces at least one new derangement the time complexity
of gen up(n; t; r) is in O(dn): A C implementation of our algorithm is available at
http://www.u-bourgogne.fr/v.vincent/AA/.

4. Permutations with a given number of �xed points

Here, we generalize the Gray code in the previous sections to permutations with a
given number of 0xed points and permutations with a bounded number of 0xed points.

http://www.u-bourgogne.fr/v.vincent/AA/
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Let c = (c(1); c(2); : : : ; c(n)) be an n-combination of m, n6m, in integer sequence
representation, so that 16 c(i)¡c(i+1)6m for i=1; 2; : : : ; n− 1. Also, let tc = t be
the binary representation of c, i.e., t=(t(1); t(2); : : : ; t(m)) with t(i)=1 if there exists a
j such that c(j)=i, and t(i)=0 elsewhere. With those notations, for a derangement d=
(d(1); d(2); : : : ; d(n))∈Dn we de0ne the length-m sequence u = (u(1); u(2); : : : ; u(m)),
denoted by (c;d), as

u(i) =

{
i if t(i) = 0;

c(d(j)) if t(i) is the jth 1 in t
(10)

and we call u= (c;d) the shu?e of c by d on the trajectory t.
In other words, u acts on indices c(1); c(2); : : : ; c(n) as d, and 0xes the other in-

dices. The shuMe operator over combinatorial objects was formally de0ned in a larger
context in [15,16]. It is not hard to show that (c;d) is a permutation of [m] with
exactly n “deranged” points (i.e. with exactly m−n 0xed points), and in addition, each
such permutation can be uniquely constructed by shuMe operation from an appropri-
ate combination and a derangement. More formally, if u = (u(1); u(2); : : : ; u(m)) is a
permutation of [m] with exactly m − n 0xed points then u= (c;d), where

• c = (c(1); c(2); : : : ; c(n)) is the n-combination of m corresponding to the subset of
[m] where u(i) �= i, and

• d is the normal form of the sequence (u(c(1)); u(c(2)); : : : ; u(c(n))).

Example. If n = 3, m = 6, c = (2; 5; 6), and d = (2; 3; 1) then t = (0; 1; 0; 0; 1; 1) and
(c;d) = (1; 5; 3; 4; 6; 2); or if n = 4, m = 6, c = (1; 2; 4; 5), and d = (2; 4; 1; 3) then

t = (1; 1; 0; 1; 1; 0) and (c;d) = (2; 5; 3; 1; 4; 6).

See also [18] for a similar approach. To summarize, we have:

Lemma 10. If Cm;n is the set of all n-combinations of [m] and Sm;n the set of all
permutations of [m] with exactly m − n :xed points then

: Cm;n × Dn → Sm;n

de:ned by (10) is a bijection.

Also, we extend the shuMe operation in a natural way to lists of derangements: if D=
d1; d2; : : : is a sublist of Dn and c∈Cm;n then (c;D) is the list (c;d1); (c;d2); : : : ,
and (c;D) = (c;D).
A strong Gray code for the set Cm;n of n-combinations of m, in integer sequence

representation, is a list for Cm;n where two successive sequences, say c=(c(1); c(2); : : : ;
c(n)) and c′ = (c′(1); c′(2); : : : ; c′(n)), are such that, for some 16 j6m, c(i) = c′(i)
for all i �= j; see [3,5,12] for such a Gray code.

Lemma 11. If Cm;n is a strong Gray code for the set Cm;n then the list Sm;n de:ned by

Sm;n = ©
c in Cm; n

(c;D(r)
n ) (11)
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is a Gray code for the set Sm;n, where r is the rank of c in Cm;n (the :rst combination
in Cm;n has rank zero) and D(r)

n is Dn or Dn according as r is even or odd.

Proof. The list Sm;n has no repetitions, and, disregarding the order, it equals the set
Sm;n. Moreover, for a 0xed c in Cm;n, the Hamming distance between two derangements
in Dn, say d and d′, equals the Hamming distance between (c;d) and (c;d′). So,
any successive permutations in (c;Dn)—or equivalently in (c;Dn)—diFer in at
most four positions. If c′ is the successor of c in Cm;n then t′ = tc′ and t = tc, the
binary representations of c′ and c, diFer in exactly two positions, say k and ‘, with
t(k)= t′(‘)=0 and t′(k)= t(‘)=1. Since Cm;n is a strong Gray code, the permutations

= (c;d) and 
= (c′;d) diFer in exactly three positions, namely k; ‘ and i, where
i is such that 
(i)=‘ and 
′(i)=k. Moreover, the index i can be computed in constant
time if d is the 0rst or last derangement in Dn.

The next lemma extends the result of the previous one to permutations where the
number of 0xed points is bounded between two constants. In this case Cm;n denotes
the Eades–McKay Gray code for combinations, and it has (see [5,12])

• :rst(Cm;n) = (1; 2; : : : ; n), and
• last(Cm;n) = (m − n+ 1; m − n+ 2; : : : ; m).

Lemma 12. Let 16 k6 ‘6m and Sm;k;‘ be the set of all permutations in Sm with
i “deranged ” points, k6 i6 ‘. Then the list

Sm;k;‘ =
‘
©
i=k
S

(k−i)
m; i (12)

is a Gray code for the set Sm;k;‘.

Proof. It is suRcient to prove that the last permutation in S(k−i)
m; i and the 0rst one in

S
(k−i+1)
m; i+1 diFer in at most four positions. But last(S(k−i)

m; i )= (c; ei), and :rst(S(k−i+1)
m; i+1 )

= (c′; ei+1), with

(i) c = last(Cm; i) and c′ = last(Cm; i+1) if k − i is even, or
(ii) c = :rst(Cm; i) and c′ = :rst(Cm; i+1) if k − i is odd,

and ej = fj or ej = ‘j; see Lemma 3 and the remark that follows. If u= (c; ei) and
u′ = (c′; ei+1) then: in case (i), u(j) = u′(j) = j for all j = 1; 2; : : : ; m − i − 1 and
u(j)=u′(j)=j+1 for all j=m−i+1; m−i+2; : : : ; m−3; in case (ii), u(j)=u′(j)=j+1
for all j=1; 2; : : : ; i− 3 and u(j)= u′(j)= j for all j= i+2; i+3; : : : ; m. In both cases
u diFers from u′ in at most four positions.

Algorithmic considerations

The lists (c;D(r)
n ) in (11) is c-similar to Dn (c is regarded as a subset of [m])

and the procedure gen up and gen down can easily be transformed to generate these
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lists. In addition, with an eRcient algorithm to compute the successor of c in Cm;n and
with appropriate initial values for the variables and transition statements between lists,
the iterative call of gen up and gen down produces Sm;n in constant average time. See
[16,18] for loopless generating algorithms for Cm;n. Similar considerations hold for the
list Sm;k;‘ de0ned in relation (12). The loopless generation of those lists remains an
open problem.
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Note added in proof. We recently learned of Korsh’ and LaFollette’s [10] algorithm
for generating derangements. Their algorithm has the remarkable properties (a) that
successive permutations diFer by only one transposition or one rotation of three ele-
ments and (b) it is loopless. Our algorithm is based on a recursive counting relation
and so has the advantage of being simpler to describe.

Appendix.

procedure gen down(n; t; r)
var i; run;
begin
tail := pred[tail];
if t =  then remove(r); endif
if n= 3 then d := d · 〈head; tail; succ[head]〉;
else run := pred[tail]

for i := n − 1 downto 1 do
if i is odd
then if n¿ 4 then

gen up(n − 2;  ; run);
endif
update d as in (9);
gen down(n − 1; �; run);
if i �= 1
then update d as in (6); run := pred[run];
endif

else gen up(n − 1; �; run);
update d as in (7) or (8);
if n¿ 4 then
gen down(n − 2;  ; run);
endif
update d as in (4);
run := pred[run];
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endif
enddo

endif
if t =  then append(r); endif
tail := succ[tail];
end

procedure remove(r)
begin
if r = head
then head := succ[r];
else if r = tail

then tail := pred[tail]
else succ[pred[r]] := succ[r];

pred[succ[r]] := pred[r];
endif

endif
end

procedure append(r)
begin
if r ¡head
then head := pred[head];
else if r ¿ tail

then tail := succ[tail]
else succ[pred[r]] := r;

pred[succ[r]] := r;
endif

endif
end
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