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We study the distribution and the popularity of some patterns in k-ary faro words, i.e. words 
over the alphabet {1, 2, . . . , k} obtained by interlacing the letters of two nondecreasing 
words of lengths differing by at most one. We present a bijection between these words 
and dispersed Dyck paths (i.e. Motzkin paths with all level steps on the x-axis) with a 
given number of peaks. We show how the bijection maps statistics of consecutive patterns 
of faro words into linear combinations of other pattern statistics on paths. Then, we deduce 
enumerative results by providing multivariate generating functions for the distribution and 
the popularity of patterns of length at most three. Finally, we consider some interesting 
subclasses of faro words that are permutations, involutions, derangements, or subexcedent 
words.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction and notations

The faro shuffle is a well-known technique to shuffle a deck of cards. The deck is split in two at the middle, and the 
cards from the two halves are combined back by taking alternatively the bottoms of stacks. Certain mathematical questions 
about the faro shuffle are considered for example in the works of Morris [23], Diaconis, Graham and Kantor [15]. Inspired 
by these studies and a solid body of modern combinatorial literature (see for instance Lothaire [21], Stanley [27], Bóna [13]
and Kitaev [19] books) that explores enumerative and bijective aspects of patterns in various discrete structures, the present 
paper considers an unexpectedly overlooked combinatorial objects, which we call faro words. They are special kind of word 
shuffles, which are important in several algorithmic and combinatorial settings (see for example Barnes work [7] and refer-
ences therein). In this paper, we present enumerative results and show how faro words and patterns therein are related to 
other structures such as Dyck paths, Motzkin paths and Dumont permutations.

1.1. Faro words and permutations

We deal with k-ary words u1u2 . . . un over the integer alphabet [1, k] = {1, 2, . . . , k} endowed with the usual total order. 
A k-ary word is called nondecreasing if ui � ui+1 for all i ∈ [1, n − 1].

Definition 1.1. For two k-ary words u and v such that 0 � |u| − |v| � 1, the faro shuffle of u and v is the k-ary word of 
length |u| +|v| obtained by interlacing the letters of u and v as follows: u1 v1u2 v2u3 v3 . . . A k-ary faro word is a faro shuffle 
of two nondecreasing k-ary words.
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Let Sn,k be the set of k-ary faro words of length n. Its cardinality equals the product of two binomial coefficients (�n/2�+k−1
k−1

)(�n/2�+k−1
k−1

)
, each of them being, respectively, the number of m-multisets of [1, k] for m = � n

2 � and m = � n
2 �. For 

example, we have S4,2 = {1111, 1112, 1121,1122,1212,1222, 2121, 2122, 2222} and |S4,2| = 9.

Definition 1.2. A faro permutation of length n is an n-ary faro word of length n that contains every letter in [1, n] exactly 
once.

Let Pn be the set of length n faro permutations. For instance, we have P3 = {123, 132, 213}. Since a faro permutation is 
entirely determined by the choice of its values on the odd indices, the cardinality of Pn is 

( n
�n/2�

)
.

A k-ary word w = w1 w2 . . . wn avoids a classical pattern (resp. consecutive pattern) p = p1-p2- · · · -pk (resp. p =
p1 p2 . . . pk) if there does not exist a strictly increasing sequence of indices i1i2 . . . ik (resp. with i j+1 = i j +1 for 1 � j � k −1) 
such that wi1 wi2 . . . wik is order-isomorphic to p (see [19] for instance). Obviously, any faro word avoids the classical pattern 
3-2-1. Let Avn(σ ) denote the set of permutations avoiding a classical pattern σ , then we have Pn ⊆ Avn(3-2-1) for n � 0, 
and Pn 	= Avn(3-2-1) for n � 3 since (n − 1)n12 . . . (n − 2) ∈ Avn(3-2-1) is not a faro word. Note that a faro permutation can 
contain all classical patterns of length 3 except 3-2-1 (e.g., 31425).

Remark 1.3. A k-ary word w = w1 w2 . . . wn is a faro word if and only if wi � wi+2 for any i ∈ [1, n − 2], which means that 
faro permutations are precisely those avoiding the three consecutive patterns 231, 321 and 312.

1.2. Dyck and dispersed Dyck paths

In order to study the distribution of patterns in faro words, we will exhibit one-to-one correspondences between these 
objects and some specific lattice paths in the first quadrant of the plane. Hence, we provide basic necessary definitions on 
lattice paths.

Definition 1.4. Dispersed Dyck paths (see [17]) are lattice paths starting at (0, 0), ending at (n, 0), consisting of level steps 
F = (1, 0), up step U = (1, 1) and down steps D = (1, −1), and never going below the x-axis and where all level steps are 
on the x-axis.

Let Bn be the set of dispersed Dyck paths of length n (or, equivalently, consisting of n steps) and set B = ∪n�0Bn , where 
the empty path is denoted by ε . A Dyck path of semilength n � 0 is a dispersed Dyck path of length 2n with no level 
steps. Let Dn be the set of Dyck paths of semilength n and let D = ⋃

n�0 Dn . Dispersed Dyck paths of length n are in 
straightforward bijection with prefixes of Dyck paths of length n, also known as ballot paths [8,28]. Indeed, we can obtain 
a ballot path from a dispersed Dyck path by replacing all level steps with up steps. Dyck and dispersed Dyck paths are 
counted by the Catalan and ballot numbers, respectively (see A000108 and A001405 in the Online Encyclopedia of Integer 
Sequences of N.J.A. Sloane [26], where the general terms are cn = 1

n+1

(2n
n

)
and bn = ( n

�n/2�
)
, respectively).

A path P avoids a pattern X if and only if P does not contain X as a sequence of consecutive steps (see for instance 
[14,22]). Note that other pattern definitions exist in the literature where steps are not necessarily consecutive [3]. We also 
need some notations similar to Kleene star and plus symbols of formal language theory. For a nonempty pattern X , an 
occurrence of the pattern X+ in a path P is a maximal sequence of consecutive repetitions of X , i.e. a maximal subword 
of the form Xk for k � 1. The pattern X∗ will be either an empty pattern or a pattern X+ . More generally, for two possibly 
empty patterns Y and Z such that Y does not end with X and Z does not start with X , the pattern Y X+ Z (resp. Y X∗ Z ) 
corresponds to an occurrence obtained by concatenation of Y , X+ and Z (resp. Y , X∗ and Z ). For instance, the path 
F U DU D F F U D F contains two occurrences of the pattern F (U D)+ F and three occurrences of F (U D)∗ F .

1.3. Statistics on words and lattice paths

Definition 1.5. A statistic s is an integer-valued function from a set A of words or paths.

To a given pattern p, we associate the pattern statistic p : A → N such that p(a) is the number of occurrences of the 
pattern p in the object a ∈ A (we use the boldface to denote statistics). For example, the statistic giving the number of 
occurrences of the consecutive pattern 123 (resp. U DU D) in a word (resp. a lattice path) is denoted by 123 (resp. UDUD). 
We denote by 1̂ (resp. 2̂, n̂) the constant statistic returning the value 1 (resp. 2, n).

Definition 1.6. The popularity of a pattern p in A is the total number of occurrences of p over all objects of A, that is 
p(A) = ∑

a∈A p(a) (see [5,10,18,19]).

For instance, for a dispersed Dyck path P = F F U D F U U DU U U D D D D we have FF(P ) = 1, DDD(P ) = 2, UD(P ) = 3, 
UUUU(P ) = 0 and 1̂(P ) = 1. Moreover, if A = {U U D D, U DU D} then the popularity of the pattern U D in A is UD(A) = 3.
2
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Let TA be the set of all statistics defined on a set A. For any pair of statistics s, t ∈ TA , we define the statistic s + t by 
(s + t)(a) = s(a) + t(a) for any a ∈A, which endows TA with a Z-module structure. Let B be a set of combinatorial objects, 
and let TB be the corresponding set of statistics. We say that two statistics s ∈ TA and t ∈ TB have the same distribution, 
or are equidistributed, if there exists a bijection f : A → B such that s(a) = t( f (a)) for any a ∈ A. In this case, with a slight 
abuse of the notation already used in [4], we write shortly f (s) = t or s = t whenever f is the identity. As a byproduct, for 
any constant statistic n̂, we have f (n̂) = n̂.

1.4. Outline of the paper

The paper is organized as follows. In Section 2, we present a constructive bijection f between the set Sn,k of k-ary faro 
words of length n and the set of dispersed Dyck paths of length n + 2k − 2 with k − 1 peaks. We show where pattern 
statistics are transported by f , which provides a more suitable ground for studying the distribution of consecutive patterns. 
Thus, we derive enumerating results on the distribution and popularity of patterns in Sn,k by giving multivariate generating 
functions where the coefficient of xn ykzt is the number of k-ary faro words of length n having exactly t occurrences of 
a given pattern. In Section 3, we present a similar study for faro permutations. More precisely, we provide a bijection g
between Pn and the set of dispersed Dyck paths of length n and show how g acts on pattern statistics of length at most 
three. Consequently, we deduce enumerative results for the distribution and the popularity of these patterns in Pn . We also 
present a bijection between Pn and involutions avoiding the classical pattern 3-2-1. Finally, in Section 4, we prove that the 
set of subexcedent words in Sn,n is related to ternary trees and Dumont permutations of the second kind [12] avoiding 
the classical pattern 2-1-4-3, and we show why faro involutions and faro derangements are respectively enumerated by the 
Fibonacci and Catalan numbers.

2. Patterns in faro words

In this section we construct a bijection f between the set Sn,k of k-ary faro words of length n and a subset of dispersed 
Dyck paths, and show how f transports pattern statistics. Then, we deduce generating functions for the distribution and 
popularity of some patterns.

A pair in a faro word w is an occurrence wi wi+1 with wi > wi+1. Remark 1.3 implies that a letter cannot be part of 
two pairs since a faro word avoids the consecutive pattern 321. A singleton in w is a letter wi not in any pair of w . Any 
faro word can be uniquely decomposed as a sequence of pairs and singletons, which are called blocks of faro words. For 
instance, the block decomposition of 111212131333 is 13(21)2(31)33.

Let Lk be the set of all possible blocks of a decomposition of a k-ary faro word, that is

Lk = {1,2, . . . ,k} ∪ { ji : 1 � i < j � k}.

Definition 2.1. We define an order relation � on Lk as follows: for g, h, i, j ∈ {1, 2, . . . , k},⎧⎪⎪⎨
⎪⎪⎩

i � j, if i � j,
i � jh, if i � h < j,
ig � j, if g < i � j,
ig � jh, if g < i � j and g � h < j.

Remark 2.2. The order relation � can be defined less technically as follows: for p, q ∈ Lk ,

p � q ⇐⇒ pq is a faro word different from a pair.

This order relation endows the set Lk with a poset structure, which we call faro poset. See Fig. 2.1 for an illustration of 
the Hasse diagram of (Lk, �).

A multichain in a poset is a chain, i.e. a totally ordered subset, with repetitions allowed. Due to the simple structure of the 
faro poset, we easily deduce the following remarks.

Remark 2.3. There is a one-to-one correspondence between k-ary faro words and the multichains of Lk . Indeed, Remark 2.2
implies that the block decomposition of a k-ary faro word w into pairs and singletons w = b1b2 . . .b� unambiguously 
corresponds to the multichain b1 � b2 � · · · � b� in Lk , and vice versa. For instance, the faro word 11313232343 =
11(31)(32)(32)3(43) corresponds to the multichain 1 � 1 � 31 � 32 � 32 � 3 � 43 (see Fig. 2.1).

Remark 2.4. If a k-ary faro word w contains a singleton x in its decomposition into blocks, then it satisfies the following 
property: the set of pairs of the form ab, b < a � x, equals the set of pairs of the form cd, d � x − 1.
3
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1 21 31 41 . . . k1

2 32 42 . . . k2

3 43 . . . k3

...
. . . .

.

.

k − 1 k(k − 1)

k

Fig. 2.1. The faro poset (Lk, �). Red blocks represent the multichain associated to the k-ary faro word 11313232343 = 12(31)(32)23(43). (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

2.1. A bijection to the set of dispersed Dyck paths

As mentioned by E. Deutsch in [26] (see sequence A124428), the number of dispersed paths of length n with k peaks (a 
peak is an occurrence of the pattern U D) is given by

|Bn,k| =
(⌊n

2

⌋
k

)(⌈n
2

⌉
k

)
.

Thus, we present a bijection f from the set Sn,k of k-ary faro words of length n to the set Bn+2(k−1),k−1 of dispersed Dyck 
paths of length n + 2(k − 1) with exactly k − 1 peaks. For a given w ∈ Sn,k , we set

f (w) = F T0 U T1 DT2 F T3 . . . F T3(k−2) U T3(k−2)+1 DT3(k−2)+2 F T3(k−1) ,

where Ti is defined for 0 � i � 3(k − 1) as follows:

– if i = 3(x − 1) then Ti is the number of occurrences of the singleton x in w;
– if i = 3(x − 1) − 1 then Ti is one plus the number of pairs xy, y < x, in w;
– if i = 3(x − 1) + 1 then Ti is one plus the number of pairs yx, y > x, in w .

It is worth noting that the image of a faro word w ∈ Sn,k depends on the arity k that we consider. Indeed, the im-
age of the empty word ε is U D when k = 2, while f (ε) = U DU D for k = 3. We refer to Fig. 2.2 for one detailed 
example of this bijection, while Fig. 2.3 provides more additional examples. For instance, the images by f of the 5-
ary words ε, 12345, 3141, 111111212222 are, respectively, U DU DU DU D , F U D F U D F U D F U D F , U U U DU D DU D DU D and 
F F F F F F U U D D F F F F U DU DU D .

Remark 2.5. Clearly, the values Ti , 0 � i � 3(k − 1), can be obtained from w by reading it from left to right and by de-
termining if the current entry x belongs to either a pair xy or yx, or a singleton x. Moreover, values of T at indices i = 0
mod 3 correspond to the lengths of maximal runs of consecutive level steps, and values at indices i = 1 mod 3 (resp. i = 2
mod 3) correspond to the lengths of maximal runs of consecutive up (resp. down) steps, which means that the sequence 
T = T0T1 . . . T3(k−1) is a run-length-like encoding of the path f (w). Thus, f (w) can be constructed from w using a linear 
time algorithm.

Lemma 2.6. The path f (w) is necessarily a dispersed Dyck path of length n + 2(k − 1) with exactly k − 1 peaks.

Proof. Since for any i 	= 0 mod 3, 1 � i � 3(k − 1) − 1 we have Ti � 1, the path w contains exactly k − 1 peaks U D . 
Interpreting Remark 2.4 on the path f (w), the number of up steps before a given level step equals the number of down 
steps before the same level step, which implies that any level step belongs to the x-axis. Let dx = ∑x+2

i=2 T3(i−1)−1 (resp. 
ux = ∑x+1

i=1 T3(x−1)+1) be the total number of down steps (resp. up steps) in the first x + 1 maximal runs of down steps 
(resp. up steps). Due to the definition of f , dx equals the number of pairs i j, 1 � j < i � x + 2, in w , and ux equals the 
4
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Fig. 2.2. The image by f of the 5-ary faro word w = 11313232343 is f (w) = F F U U DU U U D D D D F U U D DU D .

number of pairs i j, 1 � j � x + 1, i � j + 1, which implies that dx � ux . Also by definition, the total number of up steps 
(resp. down steps) in f (w) equals the total number of pairs in w , which completes the proof. �
Theorem 2.7. The map f is a bijection from Sn,k to the set Bn+2(k−1),k−1 of dispersed Dyck paths of length n + 2(k − 1) with exactly 
k − 1 peaks.

Proof. Let us prove that if w and w ′ are two distinct k-ary faro words then we have f (w) 	= f (w ′). Let i � 1 be the 
smallest positive integer such that wi 	= w ′

i . Without loss of generality, we assume wi < w ′
i . Let us consider the positions 

of wi and w ′
i in the block decomposition of w .

If wi and w ′
i are both in the pairs wi wi+1 and w ′

i w ′
i+1, then Remark 2.3 implies that a pair wi x, wi > x, cannot appear 

to the right of w ′
i in w ′ , which implies that T3(wi−1)−1 	= T ′

3(wi−1)−1, and thus f (w) 	= f (w ′).
There remain the following cases:

(i) wi or w ′
i is a singleton in w ,

(ii) wi and w ′
i are both in the pairs wi−1 wi and w ′

i−1 w ′
i = wi−1 w ′

i ,
(iii) wi belongs to the pair wi−1 wi and w ′

i belongs to the pair w ′
i w ′

i+1,
(iv) wi and w ′

i are both in the pairs wi wi+1 and w ′
i−1 w ′

i .

The fact that a faro word avoids 231 in case (i) and Remark 2.3 for cases (ii), (iii) (iv), imply that wi cannot appear to the 
right of w ′

i in w ′ . Then the number of wi in w , i.e. T3(wi−1) + T3(wi−1)+1 + T3(wi−1)−1, is different from the number of 
wi in w ′ , which is T ′

3(wi−1) + T ′
3(wi−1)+1 + T ′

3(wi−1)−1. Therefore, there is δ ∈ {−1, 0, 1} such that T3(wi−1)+δ 	= T ′
3(wi−1)+δ , 

which implies that f (w) 	= f (w ′).
Thus, f is an injective map, and using a cardinality argument (see A124428 in [26]), we conclude that f is a bijection 

from Sn,k to Bn+2(k−1),k−1. �
Although it is not used in the paper, we could prove that from a given dispersed Dyck path P ∈ Bn+2(k−1),k−1, f −1(P )

can be obtained after applying the following procedure. We refer to Fig. 2.3 for several examples.
We set s = 1 as the initial value. We mark all D-steps preceded by an U -step and all the other D-steps are left unmarked. 

Reading the steps of P from left to right:

– If a D-step is encountered, then skip it.
– If an F -step is encountered, then write the singleton s. If the next step is not an F -step, then update s = s + 1.
– If an U -step is encountered in the ith run of U -steps, then we distinguish two cases:

(i) the next step is D; then we skip this U D-pattern by continuing from the step after D , if it exists.
(ii) the next step is U ; then we write the pair ji, where j is the least integer such that the ( j − 1)-th run of D-steps 

has at least one unmarked D-step. Mark the first unmarked D-step from the ( j − 1)-th run of D-steps.

2.2. Distribution and popularity of patterns

In this part, we first show how the bijection f transports pattern statistics on Sn,k into the context of dispersed Dyck 
paths. After, we deduce multivariate generating functions for the distribution and the popularity of patterns of length two 
by exploiting the classic recursive decomposition of dispersed Dyck paths.
5
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Fig. 2.3. Images of several 5-ary words under bijection f .

Theorem 2.8. For n � 0, the bijection f from Sn,k to Bn+2(k−1),k−1 maps statistics associated to patterns of length 2 as follows:

f (11) = FF,

f (21) = UU = DD,

f (12) = DD(UD)∗UU + DD(UD)∗D + DD(UD)∗F + F(UD)+F + F(UD)∗UU

= n̂ − 1̂ − UU − FF.

Proof. By Remark 2.3, any occurrence of the pattern 11 in a faro word w is formed by two consecutive singletons xx. From 
the definition of the bijection f , it follows that the number of occurrences of 11 in w equals the number of occurrences of 
F F in f (w), that is f (11) = FF.

An occurrence of the pattern 21 in w is necessarily a pair in the decomposition of w . Since the length of a maximal run 
of consecutive up steps is equal to one plus the number of pairs yx in w for a given x ∈ [1, n], the number of occurrences of 
21 in w equals the number of occurrences of U U in f (w). On the other hand, any nonempty dispersed Dyck path P is of the 
form either P = F R or P = U Q D R where Q is a Dyck path and R a dispersed Dyck path. Reasoning by induction, we obtain 
that the number of occurrences of D D equals those of U U in any dispersed Dyck path, which implies f (21) = UU = DD.

Now, let us prove the equation f (12) = DD(UD)∗UU + DD(UD)∗D + DD(UD)∗F + F(UD)+F + F(UD)∗UU. An occurrence xy
of the pattern 12 occurs in w as a subblock of one of the following:

(i) two distinct consecutive pairs (ax)(yb),
(ii) two equal consecutive pairs (yx)(yx),

(iii) a pair followed by a singleton (ax)(y),
(iv) a singleton followed by a pair (x)(ya),
(v) two distinct singletons (x)(y).

For the case (i), we distinguish three subcases.
Subcase 1. The occurrence xy appears in a factor of the form (ax)(yb) with b � a. This implies that neither a singleton 

s ∈ [a, b] nor a pair pq with p ∈ (a, b] or q ∈ [a, b) can appear in w . Therefore, T3(s−1) = 0 for s ∈ [a, b], T3(p−1)−1 = 1 for 
p ∈ (a, b] and T3(q−1)+1 = 1 for any q ∈ [a, b). Thus, between the run of D-steps associated to T3(a−1)−1 � 2 and the run of 
U -steps associated to T3(b−1)+1 � 2, there are no level steps, and the runs of D-steps and U -steps are of length one, which 
creates m = b − a � 0 peaks U D . Hence, the occurrence xy is associated to an occurrence of the pattern D D(U D)∗U U .

Subcase 2. The occurrence xy appears in a factor of the form (ax)(yb) with b < a and a < y. This implies that neither 
a singleton x ∈ [a, y) nor a pair pq with p ∈ (a, y) or q ∈ [a, y) can appear in the word w . Therefore, T3(x−1) = 0 for 
6
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x ∈ [a, y[, T3(p−1)−1 = 1 for p ∈ (a, y) and T3(q−1)+1 = 1 for any q ∈ [a, y). Thus, between the run of D-steps associated to 
T3(a−1)−1 � 2 and the run of D-steps associated to T3(y−1)+1 � 2, there are no level steps, and the runs of D-steps and 
U -steps are of length one, which creates m = y − a > 0 peaks U D . Hence, the occurrence xy is associated to an occurrence 
of the pattern D D(U D)+D .

Subcase 3. The occurrence xy appears in a factor of the form (ax)(yb) with b < a and a � y. By definition of a faro word, 
we necessarily have a � y. Thus, we deduce a = y. So, we have T3(a−1)−1 � 3, which counts all consecutive pairs az, a > z
in w . Due to Remark 2.3, all these pairs appear consecutively in w . Thus, the number of occurrences of the form (ax)(ab), 
for x, b such that x � b < a is equal to the number of D D D = D D(U D)0 D patterns in the (a − 1)-th run of D-steps in the 
corresponding dispersed Dyck path. Combining to the subcase 2, the occurrence xy is associated to an occurrence of the 
pattern D D(U D)∗D .

In the case (ii), we have a factor of the form (ax)(yb) with a = y and x = b and the argument from Subcase 3 of case (i) 
applies. For the remaining cases, (iii) through (v), the occurrence xy of the pattern 12 is either created by a pair followed 
by a singleton (ax)(y), or by a singleton followed by a pair (x)(ya), or by two different singletons (x)(y). Arguments similar 
to the ones given above, allow us to prove that an occurrence xy in w corresponds to an occurrence of:

– D D(U D)y−a F for the case (ax)(y),
– F (U D)a−xU U for the case (x)(ya), and
– F (U D)y−x F for the case (x)(y).

Finally, in any n-length word we have n − 1 occurrences of 2-length patterns, thus n̂ − 1̂ = 11 + 21 + 12. Applying the 
bijection f to both parts of the equation, we obtain f (12) = n̂ − 1̂ − f (11) − f (21) = n̂ − 1̂ − UU − FF. �
Theorem 2.9. For p ∈ {11, 12, 21}, the trivariate generating functions F p(x, y, z) where the coefficient at xn ykzt is the number of 
k-ary faro words of length n containing exactly t occurrences of the pattern p are:

F11(x, y, z) = 2y (xz − x − 1)

−xyz + xy + x3z − x3 + y − x2 + xz + x − 1 + (xz − x − 1)A1
,

F21(x, y, z) = 2y

−y + x2z − 2 x + 1 + A2
,

F12(x, y, z) = y
(
x3z2 − x3z + x2z + xyz − xy − 3 xz + x + y − 1 + (xz − x + 1)A2

)
(
x3z2 − x3z + x2z − xyz + xy − xz − x − y + 1 + (xz − x + 1)A2

)
(−1 + y) z

+ y

1 − y
,

where A1 = √
x4 − 2 x2 y − 2 x2 + y2 − 2 y + 1 and A2 = √

x4z2 − 2 x2 yz − 2 x2z + y2 − 2 y + 1.

Proof. We have f (Sn,k) = Bn+2(k−1),k−1. Thus, for any pattern p, the trivariate generating function F p(x, y, z) is given by 
y · B p(x, y

x2 , z) where B p(x, y, z) is the trivariate generating function whose coefficient at xn ykzt is equal to the number of 
dispersed Dyck paths P ∈ Bn,k such that q(P ) = t , where q = f (p).

For p = 21, Theorem 2.8 has f (21) = UU. Therefore, we decompose the set D of Dyck paths as follows:

D = ε � U DD � U (D \ ε)DD.

We also decompose the set B of dispersed paths as follows:

B = ε � FB � U DB � U (D \ ε)DB.

If D(x, y, z) is the generating function where xn ykzt is the number of Dyck paths of length n with k peaks and t occurrences 
of U U , then the above algebraic equation yields D(x, y, z) = 1 + x2 yD(x, y, z) + x2z(D(x, y, z) − 1)D(x, y, z). If B21(x, y, z)
is the generating function whose coefficient at xn ykzt is the number of dispersed Dyck paths of length n with k peaks and 
t occurrences of U U , then the above decomposition of B yields the functional equation

B21(x, y, z) = 1 + xB21(x, y, z) + x2 yB21(x, y, z) + x2z(D(x, y, z) − 1)B21(x, y, z),

which, in turn, yields the desired result.
For p = 11, Theorem 2.8 has f (11) = FF. Therefore, we decompose the set D of Dyck paths as follows:

D = ε � U DD � U (D \ ε)DD.

We also decompose the set B of dispersed Dyck paths as follows:

B = ε �F �FU DB �FU (D \ ε)DB � U DB � U (D \ ε)DB,
7
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where F is the infinite set of paths F k for k � 1. Denote by F (x, y, z) the generating function for F , where its coefficient at 
xn ykzt is the number of n-length paths from F having k peaks and t occurrences of a pattern F F . Notice that F (x, y, z) =

x
1−xz . If D(x, y) is the generating function where the coefficient at xn yk is the number of Dyck paths of length n with 
k peaks, then the above set decomposition yields D(x, y) = 1 + x2 yD(x, y) + x2(D(x, y) − 1)D(x, y). Using the second set 
decomposition of B, we obtain a functional equation

B11(x, y, z) = 1 + x(1 + z(F (x, y, z) − 1)) + x3(1 + z(F (x, y, z) − 1))B11(x, y, z)

+ x3(1 + z(F (x, y, z) − 1))D(x, y)B11(x, y, z) + x2 yB11(x, y, z)

+ x2(D(x, y) − 1)B11(x, y, z),

which provides the result.
For p = 12, we have, for any P ∈ Bn,k , that 12(P ) = n − 1 − 11(P ) − 21(P ) (that is 12 = n̂ − 1̂ − 11 − 21), and thus

F12(x, y, z) = 1

z

(
F11+21

(
xz, y,

1

z

)
− y

1 − y

)
+ y

1 − y
.

According to Theorem 2.8, we have f (11 + 21) = FF + UU. Therefore, we decompose the set B as before for the case of 
pattern 11, and construct a functional equation by taking into account the different occurrences of F F and U U , which yields 
the claimed result. �
Corollary 2.10. For n � 0, the popularity of pattern p ∈ {11, 12, 21} in Sn,k is given by the bivariate generating function G p(x, y):

G11(x, y) = 4x2 y(
1 − y − 2x + x2 + A1

)2
,

G21(x, y) = 2x2 y
(
1 + y − x2 − A1

)
(
1 − y − 2x + x2 + A1

)2
A1

,

G12(x, y) = 2xy
(

A3 + (x3 − 2x2 + 2xy − 2x − 2y + 2)A1
)

(
1 − y − 2x + x2 + A1

)2
(1 − y) A1

,

where A1 = √
x4 − 2 x2 y − 2 x2 + y2 − 2 y + 1 and A3 = x5 − 2 x4 − x3 y − 3 x3 + 4 x2 y + 4 x2 − 2 xy − 2 y2 + 2 x + 4 y − 2.

Proof. Using Theorem 2.9, we obtain the result by calculating 
(

∂
∂z F p(x, y, z)

) ∣∣
z=1 for p ∈ {11, 21, 12}. �

Corollary 2.11. For p ∈ {11, 12, 21}, the bivariate generating functions H p(x, y) whose coefficient at xn yk is the number of k-ary faro 
words of length n avoiding the pattern p are:

H11(x, y) = 2y (x + 1)

1 − x − y − xy + x2 + x3 + (1 + x)
√

(x2 − 2x − y + 1)(x2 + 2x − y + 1)
,

H21(x, y) = y

1 − x − y
,

H12(x, y) = y
(−x3 y + x2 y − xy2 + xy + y2 − 2y + 1

)
xy3 − 3xy2 − y3 + 3xy + 3y2 − x − 3y + 1

.

Proof. Note that H p(x, y) = F p(x, y, 0), where F p(x, y, z) is as in Theorem 2.9. �
Now we discuss the two special cases of k = 2 and k = n, which correspond respectively to binary words and n-ary 

words of length n (see Table 1 for numerical values).
Case k = 2: using Corollary 2.10, we can easily prove that the popularity of the pattern 11 in Sn,2 generates a shift of the 

sequence A212964 in [26], which also counts the number of 3-element subsets A of {1, . . . , n + 1} such that all the sums 
a1 + a2 with a1 � a2 and a1, a2 ∈ A are distinct. The popularity of 21 generates a shift of the sequence A006918 where the 
general term is given by 

(n+3
3

)
/4 if n is odd, and n(n + 2)(n + 4)/24 if n is even. The other patterns do not provide known 

sequences in [26].
Case k = n: the sequences of popularity of p ∈ {11, 21, 12} are not listed in [26], and we have not succeeded in finding 

a closed form for the diagonal of G p(x, y). However, using the Maple package gfun [24], we conjecture that the popularity 
sequence for 11 satisfies a recurrence equation Q 1(n)un + Q 2(n)un+1 + Q 3(n)un+2 + Q 4(n)un+3 = 0, where Q 1, Q 2, Q 3, Q 4
8
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Table 1
Popularity of patterns p of length two in Sn,2 and Sn,n .

k Pattern p Popularity of p in Sn,k for 1 � n � 9

2 11 0, 2, 6, 14, 26, 44, 68, 100, 140, . . .
21 0, 1, 2, 5, 8, 14, 20, 30, 40, . . .
12 0,1,4,8,14,22,32,45,60, . . .

n 11 0,2,12,80,490, 3192, 20076,13094,83655, . . .
21 0,1,8,85, 574,4788,31800, 24489,162305, . . .
12 0,1,16,135,1036, 7700,53964,38646,2636920, . . .

are some polynomial functions of degree at most 10, which suggests that the generating function of the diagonal is D-finite 
when p = 11. However, we have not succeeded in obtaining a closed form of the diagonal of H11(x, y). In contrast, a simple 
study of the residues (see [27] Section 6.3) of H21(x/y, y) at the pole y0 = (1 − √

1 − 4x)/2 yields the generating function 
(1 − √

1 − 4x)/(2
√

1 − 4x) of the diagonal of H21(x, y), and its general term is, therefore, 
(2n−1

n

)
(see sequence A001700). A 

similar study for the pattern 12 yields the diagonal x(x3 − 2x2 + x + 1)/(1 − x)2 (here, the pole is y0 = x), which generates 
the sequence u1 = 1, u2 = 3, un = n for n � 3.

Statistic correspondences for other patterns can be obtained using a method similar to that of Theorem 2.8. Therefore, 
we list directly (without proof) in Theorem 2.12 the f -images of all statistics associated to a pattern of length three. It is 
worth noting that the reverse-complement χ is a bijection on Sn,k , which proves that the statistics 112 and 122 (resp. 121
and 212, resp. 132 and 213) have the same distribution on Sn,k .

Theorem 2.12. For n � 0, the bijection f from Sn,k to Bn+2(k−1),k−1 translates statistics associated to patterns of length three as 
follows:

f (111) = FFF,

f (112) = FF(UD)+F + FF(UD)∗UU,

f (122) = F(UD)+FF + DD(UD)∗FF,

f (121) = FUU + UUU,

f (212) = DDF + DDD,

f (132) = F(UD)+UU + U(UD)+UU + DD(UD)∗UU,

f (213) = DD(UD)+F + DD(UD)+D + DD(UD)∗UU,

f (123) = DD(UD)∗F(UD)∗UU + DD(UD)∗F(UD)+F + F(UD)+F(UD)∗UU + F(UD)+F(UD)+F,

f (211) = f (221) = f (231) = f (312) = f (321) = 0̂.

It would be interesting to see how the method developed in [1,2] could be applied to obtain more pattern distributions 
in dispersed Dyck paths, but this is beyond the scope of the present paper. The multivariate generating functions for patterns 
of length three are quite technical, not particularly interesting and laborious to obtain. So, we decide to leave them as an 
exercise for the reader.

3. Patterns in faro permutations

We say that a k-ary faro word w of length n is injective (resp. surjective) if and only if any value in w appears only once 
in w (resp. any value x ∈ [1, k] appears in w). A faro permutation of length n is an n-ary faro word that is both injective 
and surjective. Let Pn be the set of length n faro permutations. For instance, we have P3 = {123, 132, 213}. Since faro 
permutations are entirely determined by the choice of their values on the odd indices, the cardinality of Pn is 

( n
�n/2�

)
. Note 

that faro permutations are permutations avoiding the three consecutive patterns 231, 321 and 312 (see Remark 1.3).

Theorem 3.1. The bijection f maps surjective k-ary faro words of length n onto dispersed Dyck paths in Bn+2(k−1),k−1 avoiding U DU D
that neither start nor end with U D.

Proof. Using the definition of the bijection f and in particular the definition of the sequence T , surjective faro words are 
those that have a sequence T satisfying (i) T0 + T1 > 1, (ii) T3(x−1)−1 + T3(x−1) + T3(x−1)+1 > 2 for x ∈ [2, k − 1], and (iii) 
T3(k−1)−1 + T3(k−1) > 1. Since T1 � 1, the condition (i) is equivalent to T0 	= 0, or T0 = 0 and T1 > 1, which means that 
f (w) does not start with U D . Similarly, the condition (iii) is equivalent to the fact that f (w) does not end with U D . Since 
9
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T3(x−1)−1 � 1 and T3(x−1)+1 � 1, the condition (ii) is equivalent to T3(x−1) > 0, or T3(x−1) = 0 and T3(x−1)−1 + T3(x−1)+1 > 2, 
which means that f (w) does not contain any occurrence of U DU D . �
Theorem 3.2. The bijection f maps injective k-ary faro words of length n into dispersed Dyck paths in Bn+2(k−1),k−1 avoiding the 
patterns F F , D D D, U U U , D D F , F U U , and D DU U .

Proof. Using the definition of f , injective faro words are those that have a sequence T satisfying (i) T3(x−1) < 2, x ∈ [1, k]; 
(ii) T3(x−1)−1 < 3, x ∈ [2, k]; (iii) T3(x−1)+1 < 3, x ∈ [1, k − 1]; (iv) T3(x−1)−1 + T3(x−1) < 3, x ∈ [2, k]; (v) T3(x−1) + T3(x−1)+1 <

3, for x ∈ [1, k − 1]; and (vi) T3(x−1)−1 + T3(x−1)+1 < 3, for x ∈ [2, k − 1]. It means that f (w) avoids, respectively, the patterns 
F F , D D D , U U U , D D F , F U U and D DU U . �
Theorem 3.3. The image by f of Pn is the subset B ′

3n−2,n−1 of dispersed Dyck paths in B3n−2,n−1 that neither start nor end with U D
and where any two consecutive occurrences of U D are separated by exactly one step.

Proof. The two previous theorems imply that f (Pn) is the set of dispersed Dyck paths in B3n−2,n−1 that neither start nor 
end with U D and that avoid the patterns F F , D D D , U U U , D DU U , U DU D , D D F and F U U , which is exactly the dispersed 
Dyck paths that neither start nor end with U D and where any two consecutive occurrences of U D are separated by exactly 
one step. Indeed, in any dispersed Dyck path, the subpath between two consecutive occurrences of U D is necessarily of the 
form Di F j U k for i, j, k � 0. Then, the avoidance of F F , D D D and U U U implies that i, j, k � 1, and the avoidance of the 
other patterns implies that i + j + k = 1 as claimed. �

Thus, we deduce a one-to-one correspondence g between length n faro permutations and dispersed Dyck paths of 
length n, where g(p) is obtained from p ∈ Pn by removing all occurrences of U D in f (p). For instance, if p = 1243576 then 
f (p) = F U D F U DU U D DU D F U DU U D D and g(p) = F F U D F U D .

Theorem 3.4. For n � 0, the bijection g from Pn to Bn transports the pattern statistics as follows:

g(21) = U,

g(12) = DU + DD + DF + FF + FU,

= n̂ − 1̂ − U,

g(132) = FU + UU + DU,

g(213) = DF + DD + DU,

g(123) = DFU + DFF + FFU + FFF,

= n̂ − 2̂ − FU − UU − 2 DU − DF − DD,

g(231) = g(312) = g(321) = 0̂.

Proof. For a faro permutation w , g(w) is obtained from f (w) by removing all peaks U D . In f (w) consecutive occurrences 
of U D are separated by one letter exactly, and no U k , Dk or F k exists for k � 3. The last U in U 2 and the first D in D2

must be a part of an occurrence of U D . The claimed statistic equations are obtained from Theorem 2.8 and Theorem 2.12 by 
deleting peaks U D and replacing all remaining U 2 (resp. D2) with U (resp. D) in all considered pattern statistics. Only two 
(resp. three) patterns of length 2 (resp. 3) are possible in a faro permutation, namely 12 and 21 (resp. 123, 132 and 213). In 
any n-length word there is n − 1 (resp. n − 2) occurrences of patterns of length 2 (resp. 3). It follows that g(12) = n̂ − 1̂ − U
and g(123) = n̂ − 2̂ − FU − UU − 2 DU − DF − DD. �
Theorem 3.5. For p ∈ {21, 12, 132, 213, 123}, the bivariate generating functions K p(x, y, z), where the coefficient at xn yk is the 
number of faro permutations of length n containing exactly k occurrences of the pattern p, are:

K21(x, y) = 2

1 − 2x + √
1 − 4 x2 y

,

K12(x, y) = 1 + y + 2xy − 2 xy2 + (y − 1)
√

1 − 4 x2 y

y
(

1 − 2 xy + √
1 − 4 x2 y

) ,

K132(x, y) = 1 + y + (y − 1)
√

1 − 4 x2 y

y
(

1 − 2x + √
1 − 4 x2 y

) ,
10
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K213(x, y) = K132(x, y),

K123(x, y) = 2 + 3x − 3xy + 2x2 − 2x2 y − x(1 − y)
√

1 − 4x2

1 − 2xy + √
1 − 4x2

.

Proof. For p = 21, Theorem 3.4 has g(21) = U. So, we decompose the set of Dyck paths as D = ε � UDDD, the set of 
dispersed Dyck paths as B = ε � FB � UDDB, and obtain the following system:{

D(x, y) = 1 + x2 yD2(x, y),

B = 1 + xB(x, y) + x2 yD(x, y)B(x, y),

where D(x, y) (resp. B(x, y)) is the generating function for the set of Dyck paths (resp. dispersed Dyck paths) with respect 
to the number of occurrences of U . Solving it, we obtain K21(x, y) = B(x, y).

Since only the two length 2 patterns (12 and 21) are possible in a faro permutation, we have 12 = n̂ − 1̂ − 21. Hence, 
K12(x, y) = (K21(xy, 1

y ) − 1)/y + 1.

Only tree patterns of length 3 are possible in a faro permutation, 123, 132 and 213, so we have 123 = n̂ − 2̂ − 132 − 213. 
By Theorem 3.4, g(132 + 213) = FU + UU + 2 DU + DF + DD. We decompose the sets of Dyck and dispersed Dyck paths as 
follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
D = ε � U D � U (D \ ε)D � U D(D \ ε) � U (D \ ε)D(D \ ε),

B = ε � B � U (D \ ε)D � U (D \ ε)DB � U (D \ ε)D(B \ (ε � B))

� U D � U DB � U D(B \ (ε � B̄)),

B = F �F(B \ (ε � B)),

where F is the set of paths F k , k � 1 and B is the set of dispersed Dyck paths starting with a level step. From this 
decomposition we obtain the following system of functional equations:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D(x, y) = 1 + x2 + 2x2 y2 (D(x, y) − 1) + x2 y4 (D(x, y) − 1)2 ,

B(x, y) = 1 + B(x, y) + x2 y2 (D(x, y) − 1) + x2 y3 (D(x, y) − 1) B(x, y)+
+ x2 y4 (D(x, y) − 1)

(
B(x, y) − B(x, y) − 1

) + x2 + x2 yB(x, y)

+ x2 y2
(

B(x, y) − B(x, y) − 1
)
,

B(x, y) = x
1−x + xy

1−x

(
B(x, y) − B(x, y) − 1

)
,

where D(x, y) (resp. B(x, y), resp. B(x, y)) is the generating function for the set of Dyck paths (resp. dispersed Dyck paths, 
resp. dispersed Dyck paths starting with F ) with respect to the statistics FU+UU+2 DU+DF+DD. After solving this system, 
we obtain the result by evaluating K123(x, y) = 1 + x + (B(xy, 1

y ) − 1 − xy)/y2. Note that it is possible to look directly at 
g(123) = DFU + DFF + FFU + FFF rather than at g(132 + 213) as we did, but the decomposition will be more complicated.

Note that K132(x, y) = K213(x, y), by taking the reverse-complement of faro permutations. We remark that DF + DD + DU
corresponds to the number of occurrences of D except the last symbol if it is a D . So, if D is the set of Dyck paths and B
the set of dispersed paths, then the classical decompositions D = ε � DUDD , B = ε � BF � BUDD provide the following 
system of functional equations:⎧⎪⎨

⎪⎩
D(x, y) = 1 + x2 yD(x, y)2,

B(x, y) = 1 + xB(x, y) + x2 yB(x, y)D(x, y),

B(x, y) = 1 + xB(x, y) + x2 B(x, y)D(x, y),

where D(x, y) and B(x, y) (resp. B(x, y)) are the generating functions for the sets of Dyck paths and dispersed Dyck paths 
with respect to the number of D (resp. number of D except the last symbol if it is a D). Solving the system, we obtain 
K132(x, y) = K213(x, y) = B(x, y). �
Corollary 3.6. For n � 0, the popularity of pattern p ∈ {21, 12, 132, 213, 123} in Pn is given by the generating function Lp(x):

L21(x) = 1 − √
1 − 4x2

2(1 − 2x)
√

1 − 4x2
,

L12(x) =
2x

(
−1 + 4 x2 + x + √

1 − 4 x2
)

√
2

√
2
,

(1 − 2x)(1 + 1 − 4x ) 1 − 4 x

11
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Table 2
Popularity of patterns p of length at most three in faro permutations.

Pattern p Popularity of p in Pn for 1 � n � 11 OEIS

21 0,1,2,7,14,38,76,187,374,874,1748, . . . A107373
12 0,1,4,11,26,62,134,303,634,1394,2872, . . . A340567
132, 213 0,0,1,4,10,28,61,152,318,748,1538, . . . A340568
123 0,0,1,4,10,24,53,116,246,520,1082, . . . A340569
231,312,321 0,0,0,0, . . .

L132(x) =
x
(
−1 + 4x2 + 2x + (1 − 2x)

√
1 − 4x2

)
(1 − 2x)(1 + √

1 − 4x2)
√

1 − 4x2
,

L213(x) = L132(x),

L123(x) = x(1 + 2x)(1 − √
1 − 4x2)

(1 − 2x)(1 + √
1 − 4x2)

.

Proof. We evaluate ∂ K p(x,y)

∂ y

∣∣
y=1. �

Corollary 3.7. For n � 2, the popularity of pattern p ∈ {21, 12, 132, 213, 123} in Pn is given by p(Pn):

21(Pn) = n + 1

2

(
n

�n
2 �

)
− 2n−1 ∼

√
n

2π
· 2n,

12(Pn) = (n − 1)

(
n

�n
2 �

)
− 21(Pn) ∼

√
n

2π
· 2n,

123(Pn) = 2n − 2

(
n − 1

�n−1
2 �

)
−

(
n

�n
2 �

)
∼ 2n,

132(Pn) = 213(Pn) = 1

2

(
(n − 2)

(
n

�n
2 �

)
− 123(Pn)

)
∼

√
n

2π
· 2n.

Proof. Recall that |Pn| = ( n
�n/2�

)
. Then we have 21(Pn) + 12(Pn) = (n − 1) · ( n

�n/2�
)

and 132(Pn) + 213(Pn) + 123(Pn) = (n −
2) · ( n

�n/2�
)
, and considering 132(Pn) = 213(Pn), it suffices to prove the result for 21(Pn) and 123(Pn). Due to Corollary 3.6, 

we have

L21(x) = W (x)

2x
− 1

2(1 − 2x)

where W (x) = x
(1−2x)

√
1−4x2

is the generating function for the sequence A100071 in [26] which has the general term n
2 ·( n−1

�(n−1)/2�
)
. This induces directly 21(Pn) = n+1

2 · ( n
�n/2�

) − 2n−1.
Similarly, if we expand the numerator of L123(x) given in Corollary 3.6, then we obtain four generating functions having 

the general terms respectively equal to 2n−1 − ( n−1
�(n−1)/2�

)
, −( n−1

�(n−1)/2�
)
, 2n−1 − 1

2 · ( n
�n/2�

)
and − 1

2 · ( n
�n/2�

)
, which implies the 

claimed result. Finally, asymptotics are easily obtained using 
( n
�n/2�

) ∼
√

2
πn · 2n . �

Using formulae from Corollary 3.7 the following remark can be easily verified.

Remark 3.8. The expected number of the occurrences of the pattern 21 (respectively 12, 132 and 213) in a randomly 
selected faro permutation of length n is asymptotically equivalent to n/2 when n → ∞. In contrast, the expectation of 123
is asymptotically equivalent to 

√
πn/2 and thus the probability that a random faro permutation contains an occurrence of 

123 at a random position approaches 0 as n grows.

Table 2 provides the first values of the popularity of each pattern of length at most three in faro permutations.

4. Some particular subsets of Pn and Sn,k

In this part, we study particular subsets of faro permutations and faro words which are in one-to-one correspondence 
with other sets of well-known combinatorial objects. Let us recall the definition of a standard cycle notation (s.c.n.) and 
Foata’s first fundamental transformation φ (see [21]).
12
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In the standard cycle notation (s.c.n.) of a permutation w each cycle starts with its largest element, and cycles are 
ordered from left to right in increasing order of their largest elements.

Foata’s first fundamental transformation (see [21]) acts on a permutation w as follows. Write a permutation w in 
s.c.n., and then cyclically rearrange every cycle so that it ends with its largest element. Then, reverse each cycle and 
delete all parentheses. For instance, if w = 7321564, then the s.c.n. for w is (32)(5)(6)(741), after rearrangement we have 
(23)(5)(6)(417), and thus φ(w) = 3256714. If w is an involution, it contains only cycles of length one or two, rearrangement 
and reversion are not needed, we directly obtain the image after dropping parentheses in s.c.n.

Theorem 4.1. Foata’s first fundamental transformation bijectively maps the set In(3-2-1) of involutions of length n avoiding the 
classical pattern 3-2-1 onto the set Pn of faro permutations.

Proof. Let us prove that the standard cycle notation of w ∈ In(3-2-1) cannot contain any of the following consecutive cycles: 
(x)(yz) with z < x, (xy)(z) with z < x, (x)(y)(z) with z < x, or (xy)(zt) with t < y or z < x. Assume that w ∈ In(3-2-1) and 
assume towards contradiction that the standard cycle notation (s.c.n.) of w contains (x)(yz) with z < x. Then we have x < y
and thus z < x < y, which means that the subsequence yxz (occurring at indices z, x, y) is an occurrence of 3-2-1 in w , 
a contradiction. Due to the definition of the s.c.n. of w , the case (x)(y)(z) with z < x, the case (xy)(z) with z < x and the 
case (xy)(zt) with z < x do not occur since the cycles are arranged in increasing order of their first elements. If the s.c.n. of 
w contains (xy)(zt) with t < y, then we have t < y < x < z, which implies that w contains an occurrence zxy (at indices 
t, y, x) of 3-2-1, a contradiction. Thus, φ(In(3-2-1)) ⊂ Pn . Since φ is injective, and In(3-2-1) is also enumerated by ballot 
numbers bn (see for instance [6,25]), we have φ(In(3-2-1)) =Pn . �
Remark 4.2. It is known that Foata’s first transformation φ maps the statistic of the number of excedances (values wi such 
that wi > i) to the statistic 21 (number of descents wi > wi+1). Therefore, the generating functions K21(x, y) and L21(x) in 
Corollary 3.6 also give the distribution and the popularity of excedances in In(3-2-1).

Remark 4.3. We could easily check that g(φ(w)) = 
(w) for w ∈ In(3-2-1), where 
 is a bijection in [6] between invo-
lutions and labeled Motzkin paths, which also is a restriction of Biane’s bijection [9], which in turn is closely related to 
Françon-Viennot bijection [16].

The next theorem deals with alternating faro permutations, i.e. permutations w satisfying w1 > w2 < w3 > · · · . Let An
be the set of alternating faro permutations of length n.

Theorem 4.4. There is a bijection between A2n and the set of Dyck paths of length 2n.

Proof. Let w be a faro permutation of length 2n. Then, w is alternating if and only if w does not contain any singleton in 
its block decomposition. Due to the definition of f , this means that f (w) does not contain any F -steps and thus, g(w) is a 
Dyck path of length 2n, and vice versa. �
Theorem 4.5. The set A2n is exactly the set of length 2n faro derangements, i.e. faro permutations with no fixed point wi = i for 
i ∈ [1, 2n].

Proof. Let w = w1 w2 . . . w2n−1 w2n be a faro permutation of length 2n, that is wi < wi+2 for 1 � i � 2n − 2. Then, w is 
alternating if and only if w does not contain any singleton in its block decomposition, or equivalently, w satisfies wi > wi+1
if i is odd, and wi < wi+1 otherwise. This is equivalent to wi is greater than w1, w2, . . . , wi−1 and wi+1 if i is odd, and 
wi is smaller than wi−1, wi+1, wi+2, . . . , w2n if i is even, which means that wi > i if i is odd and wi < i otherwise. Thus, 
we have wi 	= i, and w is a derangement. This last implication also is an equivalence because it cannot occur wi < i with i
odd, or wi > i with i even in a faro derangement w . �
Theorem 4.6. Let Bn (resp. B′

n) be the set of length n faro permutations avoiding the classical pattern 2-3-1 (resp. the pattern 3-1-2), 
then

• The cardinality of Bn is given by the Fibonacci sequence fn defined by fn = fn−1 + fn−2 with f1 = 1, f2 = 2.
• We have Bn = B′

n.
• Bn is exactly the set of length n faro involutions.

Proof. A faro permutation w avoiding the pattern 2-3-1 is of the form 1w ′ or 21w ′ , where w ′ also is a faro permutation 
avoiding 2-3-1. Indeed, if a faro permutation w starts with x > 2, then w starts with x1y for some y > x. Then the value 
2 is to the right of x1y, which creates an occurrence xy2 of 2-3-1, a contradiction. Therefore, the cardinality fn of length 
n faro permutations satisfies fn = fn−1 + fn−2 with f1 = 1, f2 = 2. Using the same argument, faro permutations avoiding 
2-3-1 are also faro permutations avoiding 3-1-2.
13
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For the third statement, due to the decomposition of w ∈ Bn (either w = 1w ′ or w = 21w ′ with w ′ ∈ B), we conclude 
by induction that w is necessarily a faro involution. Conversely, a faro involution w avoids the classical pattern 321, which 
implies that w = 1w ′ or w = 21w ′ where w ′ is also a faro involution (if the first entry w1 of w satisfies w1 � 3, then we 
have w w1 = 1; since w avoids 321, we necessarily have wi > w1 � 3 for 1 � i � w1 − 1, and thus w w1−2 > w w1 = 1, which 
is not possible in a faro permutation). A simple induction implies that w ∈ Bn , which completes the proof. �

In the following, we consider (for convenience) faro words on the n-ary alphabet [0, n − 1], and we focus on the set 
of subexcedent faro words of length n, i.e. faro words w1 w2 . . . wn satisfying wi � i − 1 for 1 � i � n. We make a shift 
[1, n] → [0, n − 1] on the alphabet in order to apply directly the results presented in [12].

Theorem 4.7. There is a bijection between subexcedent faro words of length n and 2-1-4-3-avoiding Dumont permutations of the 
second kind of length 2n.

We will briefly recall the result given in [12] that enumerated 2-1-4-3-avoiding Dumont permutations of the second kind 
of length 2n. Dumont permutations of the second kind of length 2n are permutations π that satisfy the following conditions 
for i ∈ [n]:

π(2i − 1) � 2i − 1, π(2i) � 2i − 1.

In other words, the values in the odd positions are weak excedances, whereas the values in the even positions are 
deficiencies. In addition, if π avoids the pattern 2-1-4-3 (i.e. does not contain a subsequence π(i1)π(i2)π(i3)π(i4) of length 
4 such that i1 < i2 < i3 < i4 and π(i2) < π(i1) < π(i4) < π(i3)), then the values in the even positions of π are exactly 
{1, 2, . . . , n}, and the values in the odd positions of π are exactly {n + 1, n + 2, . . . , 2n}. Moreover, the subsequence of values 
of π in the even positions avoids the pattern 2-1-3 while the subsequence of values of π in the odd positions avoids the 
pattern 1-3-2. This allows [12] to construct a bijection as in Krattenthaler [20] from the even-position subsequence of π to 
north-east integer lattice paths from (0, 0) to (n, �n/2�) staying on or below the line y = x/2, and from the odd-position 
subsequence of π to the same paths but ending at (n + 1, �(n + 1)/2�). Let {an}n�0 be the sequence A047749 [26], so that

a2n = 1

2n + 1

(
3n

n

)
, a2n+1 = 1

n + 1

(
3n + 1

n

)
,

then the number of 2-1-4-3-avoiding Dumont permutations of the second kind of length 2n is anan+1. Thus, to prove 
Theorem 4.7, we only need to construct a bijection from subexcedent faro words of length n to ordered pairs of north-east 
lattice paths on or below the line y = x/2 from (0, 0) to (n, �n/2�) and (n + 1, �(n + 1)/2�), respectively.

Proof of Theorem 4.7. Let π be a subexcedent faro word of length n. As in [12], let πo and πe be the odd-position and 
even-position subsequences of π . Then πo and πe are nondecreasing subsequences such that

πo(i) = π(2i − 1) ∈ [0,2i − 2], i �
⌊

n + 1

2

⌋
,

πe(i) = π(2i) ∈ [0,2i − 1], i �
⌊n

2

⌋
.

(4.1)

Conversely, any word π whose odd-position and even-position subsequences πo and πe satisfy the above properties is 
a subexcedent faro word of length n. Given sequences πo and πe as in (4.1), associate to them a pair of north-east lattice 
paths as follows. If πo or πe has a letter ai in position i, map such an entry to the point (i − 1, ai) in the integer lattice. Let 
k = ⌊n+1

2

⌋
for πo and k = ⌊ n

2

⌋
for πe , and let ak+1 = 2k for πo and ak+1 = 2k + 1 for πe .

Now consider a north-east lattice path (as in Fig. 4.1 from (0, 0) to (k, ak+1) through vertices (0, a1), (1, a2), . . . , (k −1, ak)

in that order so that each vertex is joined to the next one by a (possibly empty) sequence of east steps followed by a 
(possibly empty) sequence of north steps. In other words, consider the path

Na1 , E, Na2−a1 , E, Na3−a2 , E, . . . , E, Nak+1−ak (4.2)

from (0, 0) to (k, ak+1), where E = (1, 0) is the unit east step and N = (0, 1) is the unit north step. Then this path lies on 
or below the line y = 2x for πo and on or below the line y = 2x + 1 for πe , and each such path corresponds to a unique πo
or a unique πe .

Moreover, notice that if n is even, then(⌊
n + 1

2

⌋
, 2

⌊
n + 1

2

⌋)
=

(⌊n

2

⌋
, n

)
(⌊n ⌋

, 2
⌊n ⌋

+ 1
)

=
(⌊

n + 1
⌋

, n + 1

)
,

2 2 2
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Fig. 4.1. An example of the bijection between a subexcedent faro word and pairs of ternary paths as in the proof of Theorem 4.7.

and if n is odd, then(⌊
n + 1

2

⌋
, 2

⌊
n + 1

2

⌋)
=

(⌊
n + 1

2

⌋
, n + 1

)
(⌊n

2

⌋
, 2

⌊n

2

⌋
+ 1

)
=

(⌊n

2

⌋
, n

)
.

It is easy to see now that the pair of paths thus obtained for πo and πe are in bijection with the pair of paths in the proof 
of the [12, Theorem 3.5] (see also [12, Figure 6]), which yields a bijection between the subexcedent faro words of size n
and 2-1-4-3-avoiding Dumont permutations of the second kind of size 2n. �

The enumeration of subexcedent faro words may be refined by considering some natural statistics on such words. To-
gether with the bijection of Theorem 4.7 to pairs of ternary paths (or 2-Dyck paths), a recent result [11] lets us find several 
equidistributed statistics on the odd-position and even-position subsequences of subexcedent faro words.

Recall that a ternary (or 2-Dyck) path is a sequence of unit steps u = (1, 1) and d = (1, −2) starting at (0, 0) and staying 
in the first quadrant. A peak of a 2-Dyck path is an ud-block in that path, as well as the vertex between the two steps. 
Likewise, a double descent of a 2-Dyck path is a dd-block in that path, as well as the vertex between the two steps. Define 
the following statistics on 2-Dyck paths:

– pk0, the number of peaks at even height,
– pk1, the number of peaks at odd height,
– dd, the number of double descents.

Then the following results hold.

Theorem 4.8 ([11]).

– On 2-Dyck paths ending at height 0, the tristatistic (pk0 −1, pk1, dd) is jointly equidistributed with any of its permutations.
– On 2-Dyck paths ending at height 1, the bistatistics (pk0, pk1) and (pk1, pk0) are jointly equidistributed.

For a subexcedent faro word π of length 2n, define the following statistics on its odd-position and even-position subse-
quences πo and πe:
15
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– eOdis(π), the number of distinct positive even letters in πo (we exclude 0 since πo and π always start with 0);
– oOdis(π), the number of distinct odd letters in πo ;
– aOrpt(π) = {i ∈ [n − 1] | π(2i − 1) = π(2i + 1)}, the number of letter repetitions in πo (the “a” in aOrpt stands for “any 

parity”);
– eEdis(π), the number of distinct even letters in πe ;
– oEdis(π), the number of distinct odd letters in πe .

Then we have the following result.

Theorem 4.9. On subexcedant faro words of length n,

– the tristatistic (eOdis, oOdis, aOrpt) is jointly equidistributed with any of its permutations.
– the bistatistics (eEdis, oEdis) and (oEdis, eEdis) are jointly equidistributed.

Proof. For each of πo and πe , define k and a1, a2, . . . , ak, ak + 1 as in the proof of Theorem 4.7, and let

P = Na1 , E, Na2−a1 , E, Na3−a2 , E, . . . , E, Nak+1−ak

be the corresponding north-east path as in (4.2) (when needed, we will distinguish the paths obtained from πo and πe

as Po and Pe , respectively). Map P to a lattice path obtained by reversing P and mapping unit steps N �→ u = (1, 1) and 
E �→ d = (1, −2). In other words, consider the map

φ : P �→ φ(P ) = uak+1−ak ,d, uak−ak−1 ,d, . . . ,d, ua2−a1 ,d, ua1 ,

where φ(P ) starts at (0, 0). Recall that P starts at (0, 0), stays in the first quadrant on or below y = 2x for πo and y = 2x +1
for πe , and ends on y = 2x for πo and y = 2x +1 for πe . Therefore, it is easy to see that φ(P ) stays in the first quadrant and 
ends at height 0 for πo and at height 1 for πe . Moreover, each distinct letter of πo or πe (except for 0 in πo) corresponds 
to a block E N in the corresponding path P , which in turn corresponds to a block ud of φ(P ), i.e. to a peak of φ(P ).

Furthermore, a repetition of a letter in positions i and i + 1 of πo means that ai+1 = ai , and thus the i-th and (i + 1)-st 
steps E in P are adjacent, which in turn corresponds to a block dd in φ(P ). Therefore, aOrpt(π) = dd(Po).

Let � be one of distinct letters of in πo or πe (for πo , also assume � > 0). Suppose its rightmost occurrence is in position 
j. Then there are k + 1 − � east steps and ak+1 − a� north steps in path P to the right of that point, so the height of the 
corresponding peak in φ(P ) is

ak+1 − a� − 2(k + 1 − �) ≡ ak+1 − a� (mod 2) ≡ a� (mod 2) + ak+1 (mod 2).

It follows that, on πo (eOdis, oOdis)(π) = (pk0 −1, pk1)(φ(Po)) if ak+1 is even, and (eOdis, oOdis)(π) =
(pk1, pk0 −1)(φ(Po)) if ak+1 is odd. Likewise, (eEdis, oEdis)(π) = (pk0, pk1)(φ(Pe)) if ak+1 is even, and (eEdis, oEdis)(π) =
(pk1, pk0)(φ(Pe)) if ak+1 is odd. However, the two statistics on the right-hand side of the equations are jointly equidis-
tributed in each case by Theorem 4.8, and thus the parity of ak+1 is immaterial in each case. �

From Corollary 1.12 and Equation (2.7) of [11], we can also determine the joint distribution of all the statistics we defined 
on subexcedent faro words. For this result, we let no = ⌊n+1

2

⌋
and ne = ⌊ n

2

⌋
(so no + ne = n). We also let aErpt(π) be the 

number of letter repetitions in πe , i.e. aErpt(π) = {i ∈ [n − 1] | π(2i) = π(2i + 2)}.

Corollary 4.10. The number of subexcedent faro words π of length n such that

(eOdis,oOdis,aOrpt,eEdis,oEdis,aErpt)(π) = (r1, r2, r2, r4, r5, r6)

is

1

no

(
no

r1

)(
no

r2

)(
no

r3

)
r4 + r5

ne(ne + 1)

(
ne + 1

r4

)(
ne + 1

r5

)(
ne

r6

)
.

Note also that r1 + r2 + r3 = no − 1 and r4 + r5 + r6 = ne .
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