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Abstract

We yield bivariate generating function for the number of n-length
partial skew Dyck paths with air pockets (DAPs) ending at a given
ordinate. We also give an asymptotic approximation for the average
ordinate of the endpoint in all partial skew DAPs of a given length.
Similar studies are made for two subclasses of skew DAPs, namely
valley-avoiding and zigzagging, valley-avoiding skew DAPs. We express
these results as Riordan arrays. Finally, we present two one-to-one
correspondences with binary words avoiding the patterns 00 and 0110,
and palindromic compositions with parts in t2, 1, 3, 5, 7, . . .u.

1 Introduction

Dyck paths with air pockets (DAPs) are introduced in a recent paper [5].
These paths consist in lattice paths in N2 starting at the origin, ending on the
x-axis, and made of up-steps U “ p1, 1q and down-steps Dk “ p1,´kq where
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k ě 1, and so that no two down-steps can be consecutive. The length of a
path P is the number of steps in P . DAPs can be viewed as ordinary Dyck
paths where maximal runs of down-steps are replaced by one large down-step.
In sorting theory, DAPs also correspond to a stack evolution with (partial)
reset operations that cannot be consecutive, see [14]. In [5], the authors
enumerate these paths and their prefixes with respect to the length, the type
(up or down) of the last step, and the ordinate of the endpoint. Moreover,
they establish a one-to-one correspondence between DAPs of length n and
peak-less Motzkin paths of length n ´ 1. In a second paper, the authors
[6] generalized DAPs by allowing them to go below the x-axis, calling them
grand Dyck paths with air pockets (GDAPs). They yield enumerative results
for these paths with respect to their length and various restrictions on their
minimum and maximum ordinates. More recently, the definition of DAPs was
extended to include horizontal steps under certain conditions, as described in
[4, 7].

Let D be the set of all DAPs and Dn be the set of DAPs of length n. In
this paper, we generalize DAPs by allowing back-down steps as follows.

Definition 1. A skew Dyck path with air pockets (abbreviated as "skew
DAP") is a lattice path in N2, consisting of steps in the set tU,L,D1, D2, . . .u,
where U “ p1, 1q, L “ p´1,´1q, and Dk “ p1,´kq for every positive integer k
(we abbreviate D1 to D for convenience), starting at the origin p0, 0q, ending
somewhere on the x-axis, and such that any occurrence of the following
consecutive patterns is forbidden: UL, LU , and DiDj for any i, j ą 0.

Figure 1: From left to right, a skew Dyck path with air pockets and a partial
skew Dyck path with air pockets ending at ordinate 3, respectively.

We say a skew DAP has length n (where n is a nonnegative integer) if
it consists of n steps (the empty path ε counts as a 0-length skew DAP).
For all n ě 0, we let Sn denote the set of n-length skew DAPs, and we set
S “

Ť

ně0 Sn.

Definition 2. A skew DAP is valley-avoiding (v.a. skew DAP for short) if
it contains no occurrence of the consecutive pattern DkU , for all k ą 0.
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For all n ě 0, we let Vn denote the set of n-length v.a. skew DAPs, and
we set V “

Ť

ně0 Vn.

Definition 3. A valley-avoiding skew DAP is zigzagging (z.v.a. skew DAP
for short) if it contains no occurrence of the consecutive pattern LL.

For all n ě 0, we let Zn denote the set of n-length z.v.a skew DAPs, and
we set Z “

Ť

ně0Zn.

Finally, for each type of skew Dyck paths defined above, we will use the
terminology of partial skew Dyck paths to refer to a prefix of a skew DAP
(i.e. the path does not necessarily end on the x-axis). For all n ě 0, we let
PDn (resp. PVn, resp. PZn) denote the set of n-length partial skew DAPs
(resp. v.a. skew DAPs, resp. z.v.a. skew DAPs), and we use the notation
PD, PV , PZ for the sets of all partial skew DAPs of each type. We refer to
Figure 1 for an illustration of a skew DAP and a partial skew DAP.

For k ě 0, we consider the generating function fk “ fkpzq (resp. gk “ gkpzq,
resp. hk “ hkpzq), where the coefficient rznsfk (resp. rznsgk, resp. rznshk)
of zn in its series expansion is the number of partial skew Dyck paths of
length n, ending at ordinate k with an up-step U (resp., with a down-step
Dk, k ě 1, resp., with a back-down step L). Also, we introduce the bivariate
generating functions

F pu, zq “
ÿ

kě0

ukfkpzq, Gpu, zq “
ÿ

kě0

ukgkpzq, and Hpu, zq “
ÿ

kě0

ukhkpzq.

For short, we use the notation F puq, Gpuq, and Hpuq for these functions. In
Sections 3 and 4 respectively, the same notations are preserved for partial
v.a. skew DAPs and partial z.v.a. skew DAPs, respectively.
Motivation and outline of the paper. The main goal of this work is to
present enumerative results for three classes of partial skew Dyck paths, and
to exhibit some links between these paths and restricted classes of binary
words and compositions (incidentally, we express these results as Riordan
arrays). More precisely, in Section 2, we give bivariate generating functions
for the number of n-length partial skew DAPs ending at ordinate k ě 0
with a given type of step (up, down or back-down step). We deduce the
generating function for the total number of skew DAPs (resp. of partial
skew DAPs). We also give asymptotic approximations for the corresponding
cardinalities, and for the average ordinate of the endpoint in all partial skew
DAPs of a given length. In Section 3, we make a similar study for partial
v.a. skew DAPs. In addition, we present a bijection between these paths
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and binary words avoiding the patterns 00 and 0110. Section 4 presents the
counterpart for z.v.a skew DAPs, and we provide a bijection between these
paths and palindromic compositions with parts in t2, 1, 3, 5, 7, . . .u. Some of
the obtained results are summarized in the following table.

Type of paths First terms OEIS
Skew DAPs 1, 0, 1, 1, 3, 5, 13, 26, 64, 143, . . . New
Partial skew DAPs 1, 1, 2, 4, 9, 19, 44, 100, 236, 558 . . . New
v.a. skew DAPs 1, 0, 1, 1, 2, 2, 4, 5, 9, 12, . . . A124280
Partial v.a. skew DAPs 1, 1, 2, 3, 5, 7, 11, 16, 25, 37, . . . A130137
z.v.a skew DAPs 1, 0, 1, 1, 2, 2, 3, 4, 6, 8, . . . A103632
Partial z.v.a skew DAPs 1, 1, 2, 3, 5, 7, 10, 14, 20, 28, . . . New

2 Enumerating skew DAPs

In this part, we count partial skew DAPs of a given length, i.e., ending at a
given abscissa, according to the type of the last step, and the ordinate of the
endpoint.

Theorem 1. We have

F puq “
s1

s1 ´ u
, Gpuq “

1 ´ s1z

zps1 ´ uq
, Hpuq “

1 ´ s1z

ps1 ´ uqps1 ´ zq
,

and thus,

F puq `Gpuq `Hpuq “
s1p1 ´ z2q

zps1 ´ zqps1 ´ uq
,

where s1 “ A
6z `

4z4´2z3´ 4
3
z2´ 2

3
z` 2

3
zA ` z`1

3z , with

A “
`

72z5 ´ 72z4 ` 44z3 ` 12B z ´ 48z2 ´ 12z ` 8
˘

1
3 ,

and

B “
a

´96z10 ` 144z9 ` 60z8 ´ 108z7 ´ 24z6 ´ 48z5 ` 81z4 ´ 18z2 ` 12z ´ 3.

Proof. By convention, we fix f0 “ 1 to take into account the empty path
consisting of the origin p0, 0q only. A nonempty skew DAP of length n ending
at ordinate k ě 1 with an up-step U is uniquely obtained from a skew DAP
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of length n ´ 1 ending at ordinate k ´ 1 with either an up-step or a down-
step, which implies the recurrence relation fkpzq “ zpfk´1pzq ` gk´1pzqq for
k ě 1. A skew DAP of length n ending at ordinate k ě 0 with a down-step
Di, i ě 1, is uniquely obtained from a skew DAP of length n ´ 1 ending
at ordinate k ` i, i ě 1, with either an up-step U or a back-down-step L,
which implies the recurrence relation gkpzq “ z

ř

iě1 pfk`ipzq ` hk`ipzqq , for
k ě 0. A skew DAP of length n ending at ordinate k ě 0 with an L-step is
uniquely obtained from a skew DAP of length n´ 1 ending at ordinate k ` 1
with either a down-step or an L-step, which implies the recurrence relation
hkpzq “ zpgk`1pzq ` hk`1pzqq for k ě 0. Hence, we obtain the following
equations:

$

’

’

&

’

’

%

f0pzq “ 1,
@k ą 0, fkpzq “ z pfk´1pzq ` gk´1pzqq ,
@k ě 0, gkpzq “ z

ř

iě1 pfk`ipzq ` hk`ipzqq ,
@k ě 0, hkpzq “ z pgk`1pzq ` hk`1pzqq .

From the previous system, we multiply both sides of all four equations
by uk, then we sum over k, and using basic algebraic methods on generating
functions. For instance, let us examine the case of Gpuq, which is the least
straightforward, we get:

Gpuq “
ÿ

kě0

gku
k “

ÿ

kě0

z
ÿ

iě1

pfk`ipzq ` hk`ipzqquk.

Interchanging the order of the double summation, the formula becomes:

Gpuq “ z
ÿ

iě1

pfi ` hiq
i´1
ÿ

k“0

uk “ z
ÿ

iě1

pfi ` hiq
1 ´ ui

1 ´ u
.

Then, bringing the factor 1
1´u to the front of the expression, and expanding

the product inside of the summation, we deduce:

Gpuq “
z

1 ´ u

˜

ÿ

iě1

fi ´
ÿ

iě1

fiu
i `

ÿ

iě1

hi ´
ÿ

iě1

hiu
i

¸

,

which can be rewritten as:

Gpuq “
z

1 ´ u
pF p1q ´ F p0q ´ F puq ` F p0q `Hp1q ´Hp0q ´Hpuq `Hp0qq .

Ultimately, we derive the following system for F puq, Gpuq, and Hpuq:
$

&

%

F puq “ 1 ` zupF puq `Gpuqq,
Gpuq “ z

1´u pF p1q ´ F puq `Hp1q ´Hpuqq ,

Hpuq “ z
u pHpuq ´Hp0q `Gpuq ´Gp0qq .
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Solving the previous linear system for F puq, Gpuq, and Hpuq, we get:

F puq “
u z2 pu ´ zq pF p1q ` Hp1qq ` u z3pGp0q ` Hp0qq ´ u2 ` pz ` 1qu ` z2 ´ z

u3z ´ 2u z3 ´ u2z ` z2u ´ u2 ` zu ` z2 ` u ´ z
,

Gpuq “ ´
z

`

pzu ´ 1q pu ´ zq pF p1q ` Hp1qq `
`

z2u ´ z
˘

pGp0q ` Hp0qq ` u ´ z
˘

u3z ´ 2u z3 ´ u2z ` z2u ´ u2 ` zu ` z2 ` u ´ z
,

Hpuq “ ´

``

z2u `
`

u2 ´ u
˘

z ´ u ` 1
˘

pGp0q ` Hp0qq ` z pzu ´ 1q pF p1q ` Hp1qq ` z
˘

z

u3z ´ 2u z3 ´ u2z ` z2u ´ u2 ` zu ` z2 ` u ´ z
.

All three fractions share the same denominator, which we can be rewritten as
zpu´s1qpu´s2qpu´s3q, where s1, s2, s3 are the roots of u3z´2u z3 ´u2z`

z2u ´ u2 ` zu ` z2 ` u ´ z. We observe that only two roots have a Taylor
expansion around z “ 0 (without loss of generality, we assume that these
roots are s2 and s3). According to the kernel method [16], u´ s2 and u´ s3
are bad factors that can be cancelled both numerator and denominator. Thus,
the numerator is simplified into the coefficient of u2, and the denominator
becomes zpu´ s1q. Finally, we obtain:

$

’

&

’

%

F puq “
1´z2pF p1q`Hp1qq

zps1´uq
,

Gpuq “
zpF p1q`Hp1qq

s1´u ,

Hpuq “
zpGp0q`Hp0qq

s1´u ,

where the third root s1 is equal to s1 “ A
6z `

4z4´2z3´ 4
3
z2´ 2

3
z` 2

3
zA ` z`1

3z , with

A “
`

72z5 ´ 72z4 ` 44z3 ` 12B z ´ 48z2 ´ 12z ` 8
˘

1
3 ,

and

B “
a

´96z10 ` 144z9 ` 60z8 ´ 108z7 ´ 24z6 ´ 48z5 ` 81z4 ´ 18z2 ` 12z ´ 3.

Fixing u “ 0 and u “ 1 in the above equations, we obtain the values of Gp0q,
Hp0q, F p1q and Hp1q:

$

’

’

’

’

’

&

’

’

’

’

’

%

Gp0q “ 1´zs1
zs1

,

Hp0q “ zs1´1
pz´s1qs1

,

F p1q “
pz´1qp´s21z`2s1 z2`z2`s1´zq

zps1´1qpz´s1q
,

Hp1q “
p´2s1´1qz4`ps21`2s1`2qz3`p´2s21´1qz2`ps31´s21`2s1´1qz´s21`s1

z2ps1´1qpz´s1q
.

Plugging those expressions back into F puq, Gpuq, and Hpuq, we obtain the
expected result.
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The first terms of the series expansion of F puq `Gpuq `Hpuq are

1 ` uz ` pu2 ` 1qz2 ` pu3 ` 2u` 1qz3 ` pu4 ` 3u2 ` 2u` 3qz4

` pu5 ` 4u3 ` 3u2 ` 6u` 5qz5 ` pu6 ` 5u4 ` 4u3 ` 10u2 ` 11u` 13qz6

` pu7 ` 6u5 ` 5u4 ` 15u3 ` 19u2 ` 28u` 26qz7 `Opz8q.

Now, we deduce the coefficient rukspF puq`Gpuq`Hpuqq of uk in the series
expansion of F puq `Gpuq `Hpuq by using the well known series expansion

1
s1´u “ 1

s1

ř

kě0 s1
´k ¨ uk.

Corollary 1. We have

ruks pF puq `Gpuq `Hpuqq “
1 ´ z2

zps1 ´ zq
s´k
1 .

The next remark makes a link with Riordan arrays theory. We refer to
[8, 9, 17] for a background on Riordan arrays.

Remark 1. Let P be the matrix rpn,ksn,kě0, where pn,k is the number of
skew DAPs of length n ending at ordinate k, i.e. the coefficient of zn in the
series expansion of ruks pF puq `Gpuq `Hpuqq. The first values of P are

P “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 2 0 1 0 0 0 0
3 2 3 0 1 0 0 0 . . .
5 6 3 4 0 1 0 0
13 11 10 4 5 0 1 0
26 28 19 15 5 6 0 1

...
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Since F puq ` Gpuq ` Hpuq “
gpzq

1´ufpzq
with fpzq “ s´1

1 and gpzq “ 1´z2

zps1´zq
,

the matrix P corresponds to the Riordan array
ˆ

1 ´ z2

zps1 ´ zq
,
1

s1

˙

.

Now we plug in u “ 0 and u “ 1 to get the generating functions for skew
DAPs and partial skew DAPs, respectively, and using classical methods [12,
15], we provide an asymptotic approximation of the coefficient of zn.
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Theorem 2. The generating function for the total number of skew DAPs
with respect to the length is given by

F p0, zq `Gp0, zq `Hp0, zq “
z2 ´ 1

z pz ´ s1q
,

and an asymptotic approximation of the n-th term is

0.5292 ¨ 2.7309n ¨ n´3{2.

The leading terms of the series expansion of F p0, zq `Gp0, zq `Hp0, zq

are

1 ` z2 ` z3 ` 3z4 ` 5z5 ` 13z6 ` 26z7 ` 64z8 ` 143z9 ` O
`

z10
˘

.

Theorem 3. The generating function for the total number of partial skew
DAPs with respect to the length is given by

F p1, zq `Gp1, zq `Hp1, zq “
s1p1 ´ z2q

zps1 ´ zqps1 ´ 1q
,

and an asymptotic approximation of the n-th term is

2.4909 ¨ 2.7309n ¨ n´3{2.

The leading terms of the series expansion of F p1, zq `Gp1, zq `Hp1, zq

are

1 ` z ` 2z2 ` 4z3 ` 9z4 ` 19z5 ` 44z6 ` 100z7 ` 236z8 ` 558z9 ` O
`

z10
˘

.

By calculating BupF pu, zq`Gpu, zq`Hpu, zqq|u“1, we obtain the following.

Corollary 2. An asymptotic approximation for the average of the ordinate
of the endpoint in all partial skew DAPs of a given length is 2.4859.

3 Enumerating v.a. skew DAPs

In this part, we use the same methodology and notation as in Section 2 in
order to enumerate (partial) valley-avoiding skew Dyck paths with air pockets
(v.a. skew DAPs for short), i.e. skew DAPs that do not contain a down-step
followed by an up-step.

Theorem 4. We have
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F puq “
1

1 ´ zu
, Gpuq “

z2 ´ z4

p1 ´ zuqp1 ´ z ´ z2 ` z3 ´ z4q
,

Hpuq “
z4

p1 ´ zuqp1 ´ z ´ z2 ` z3 ´ z4q
,

and thus,

F puq `Gpuq `Hpuq “
1 ´ z ` z3 ´ z4

p1 ´ zuqp1 ´ z ´ z2 ` z3 ´ z4q
.

Proof. By convention, we fix f0 “ 1 to take into account the empty path
consisting of the origin p0, 0q only. A nonempty v.a. skew DAP of length
n ending at ordinate k ě 1 with an up-step U is uniquely obtained from a
skew v.a. DAP of length n ´ 1 ending at ordinate k ´ 1 with an up-step,
which implies the recurrence relation fkpzq “ zfk´1pzq for k ě 1. The two
recurrence relations for gkpzq and hkpzq are the same as in the previous
section. So, we refer to Section 2 for an explanation on how they are derived,
and we have the following system of equations:

$

’

’

&

’

’

%

f0pzq “ 1,
@k ą 0, fkpzq “ zfk´1pzq,
@k ě 0, gkpzq “ z

ř

iě1pfk`ipzq ` hk`ipzqq,
@k ě 0, hkpzq “ zpgk`1pzq ` hk`1pzqq.

Using the same method as for the proof of Theorem 1, the previous system
induces the following equations for F puq, Gpuq, and Hpuq:

$

&

%

F puq “ 1
1´zu ,

Gpuq “ z
1´upF p1q ´ F puq `Hp1q ´Hpuqq,

Hpuq “ z
upGpuq ´Gp0q `Hpuq ´Hp0qq.

Solving the previous linear system for F puq, Gpuq, and Hpuq, we get:
$

&

%

F puq “ 1
1´zu ,

Gpuq “ C
u3z2´u2z3´u z4´u3z`2u z3`z3`u2´2z2´u`z

,

Hpuq “ D
u3z2´u2z3´u z4´u3z`2u z3`z3`u2´2z2´u`z

,

with

C “ ´ z
´

u2z2Hp1q ´ u2zp1 `Hp1qq ` uz3pGp0q `Hp0q ´Hp1qq

` uz2p1 ´Gp0q ´Hp0q `Hp1qq ` uzp1 ´Hp1qq ` uHp1q

´ z2p1 `Gp0q `Hp0q ´Hp1qq ` zpGp0q `Hp0q ´Hp1qq

¯

,
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and

D “ ´ z
´

u2z2pGp0q `Hp0qq ´ u2zpGp0q `Hp0qq ` uz3Hp1q

´ uz2p1 `Gp0q `Hp0q `Hp1qq ` upGp0q `Hp0qq

` z2p1 ´Hp1qq ` zpGp0q `Hp0q `Hp1qq ´Gp0q ´Hp0q

¯

.

Here, Gpuq and Hpuq share the same denominator, which we write as
pz2 ´ zqpu´ r1qpu´ r2qpu´ r3q, where r1, r2, and r3 are the roots of u3z2 ´

u2z3 ´ u z4 ´ u3z ` 2u z3 ` z3 ` u2 ´ 2z2 ´ u ` z. Since two of them have
a Taylor expansion around z “ 0 (without loss of generality, we assume
that these roots are r2 and r3), the kernel method [16] once again tells us
that u´ r2 and u´ r3 are both bad factors and can be thus cancelled both
numerator and denominator in Gpuq and Hpuq. This leaves us with the
numerators being simplified into the coefficient of u2, and the denominators
both being simplified into pz2 ´ zqpu´ r1q. Moreover, r1 happens to be equal
to 1

z , which conveniently leads to simplifications further on. The previous
system is then simplified into:

$

’

&

’

%

F puq “ 1
1´zu ,

Gpuq “
zppz´1qHp1q´1q

p1´zqpu´1{zq
,

Hpuq “
´zpGp0q`Hp0qq

u´1{z .

Evaluating the second equation at u “ 0, and the third one at u “ 0 and
u “ 1 respectively, we derive the values of Gp0q, Hp0q, and Hp1q:

$

’

&

’

%

Gp0q “
pz2´1qz

z4´z3`z2`z´1
,

Hp0q “ ´z4

z4´z3`z2`z´1
,

Hp1q “ z4

z5´2z4`2z3´2z`1
.

Plugging those expressions back into F puq, Gpuq, and Hpuq, we obtain the
expected result.

The first terms of the series expansion of F puq `Gpuq `Hpuq are

1 ` uz `
`

u2 ` 1
˘

z2 `
`

u3 ` u` 1
˘

z3 `
`

u4 ` u2 ` u` 2
˘

z4

`
`

u5 ` u3 ` u2 ` 2u` 2
˘

z5 `
`

u6 ` u4 ` u3 ` 2u2 ` 2u` 4
˘

z6

`
`

u7 ` u5 ` u4 ` 2u3 ` 2u2 ` 4u` 5
˘

z7 ` O
`

z8
˘

.

Now, we deduce the coefficient rukspF puq `Gpuq `Hpuqq of uk in the series
expansion of F puq `Gpuq `Hpuq.

10



Corollary 3. We have

rukspF puq `Gpuq `Hpuqq “
1 ´ z ` z3 ´ z4

1 ´ z ´ z2 ` z3 ´ z4
zk.

Remark 2. Let PV be the matrix PV “ rpVn,ksn,kě0, where pVn,k is the number
of v.a. skew DAPs of length n ending at ordinate k, i.e. the coefficient of zn

in the series expansion of rukspF puq `Gpuq `Hpuqq. The first values of PV

are

PV “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
2 1 1 0 1 0 0 0 . . .
2 2 1 1 0 1 0 0
4 2 2 1 1 0 1 0
5 4 2 2 1 1 0 1

...
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Since F puq`Gpuq`Hpuq “
gpzq

1´ufpzq
, with fpzq “ z and gpzq “ 1´z`z3´z4

1´z´z2`z3´z4
,

the matrix PV corresponds to the Riordan array
ˆ

1 ´ z ` z3 ´ z4

1 ´ z ´ z2 ` z3 ´ z4
, z

˙

.

Now we plug in u “ 0 and u “ 1 to get the generating function for v.a.
skew DAPs and partial v.a. skew DAPs, respectively.

Theorem 5. The generating function for the total number of v.a. skew DAPs
with respect to the length is given by:

F p0, zq `Gp0, zq `Hp0, zq “
1 ´ z ` z3 ´ z4

1 ´ z ´ z2 ` z3 ´ z4
,

and an asymptotic of the n-th term is

´a4 ` a3 ´ a` 1

4a4 ´ 3a3 ` 2a2 ` a
¨
`

a3 ´ a2 ` a` 1
˘n

« 0.3051 ¨ 1.5129n,

where a « 0.6609925319 is the smallest root (modulus-wise) of z4 ´ z3 ` z2 `

z ´ 1.
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A simple calculation on generating functions allows to prove that the
number an of n-length v.a. skew DAPs satisfies a0 “ a2 “ a3 “ 1, a1 “ 0,
a4 “ 2 and an “ 2an´2 ` an´5 for n ě 5. The leading terms of the series
expansion of F p0, zq `Gp0, zq `Hp0, zq are:

1 ` z2 ` z3 ` 2z4 ` 2z5 ` 4z6 ` 5z7 ` 9z8 ` 12z9 ` O
`

z10
˘

.

The coefficients spell out sequence A124280 in [18], and the n-th term an
satisfies

an “

tn´2
2

u
ÿ

k“0

n´2k´2
ÿ

j“0

ˆ

j

n´ 2k ´ j ´ 2

˙ˆ

k

n´ 2k ´ j ´ 2

˙

.

Theorem 6. The generating function for the total number of partial v.a.
skew DAPs with respect to the length is given by:

F p1, zq `Gp1, zq `Hp1, zq “
1 ` z3

1 ´ z ´ z2 ` z3 ´ z4
,

and an asymptotic of the n-th term is

a3 ` 1

4a4 ´ 3a3 ` 2a2 ` a
¨
`

a3 ´ a2 ` a` 1
˘n

« 0.9000 ¨ 1.5129n,

where a « 0.6609925319 is the smallest root (modulus-wise) of z4 ´ z3 ` z2 `

z ´ 1.

A simple calculation on generating functions allows to prove that the
number bn of n-length partial v.a. skew DAPs satisfies b0 “ b1 “ 1, b2 “ 2,
b3 “ 3, b4 “ 5 and bn “ 2bn´2 ` bn´5 for n ě 5. The leading terms of the
series expansion of F p1, zq `Gp1, zq `Hp1, zq are:

1 ` z ` 2z2 ` 3z3 ` 5z4 ` 7z5 ` 11z6 ` 16z7 ` 25z8 ` 37z9 ` O
`

z10
˘

.

The coefficients spell out sequence A130137 in [18].
In the same way as we did at the end of Section 2, we obtain the following.

Corollary 4. An asymptotic approximation for the average of the ordinate
of the endpoint in all partial v.a. skew DAPs of a given length is 1.9497.

We end this section by exhibiting a constructive bijection between the set
PVn of n-length partial v.a. skew v.a. DAPs, and the set Bn´1 of pn ´ 1q-
length binary words avoiding the patterns 00 and 0110. Let B “

Ť

ně0
Bn.
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Definition 4. We recursively define the map χ from the set PVztεu to B as
follows. For β P PVztεu, we set:

χpβq “

$

’

’

’

’

&

’

’

’

’

%

ϵ if β “ U piq
1k´10 if β “ UkDk, k ě 1 piiq
χpαq1 if β “ Uα, α P PVztεu piiiq
χpαq10 if β “ UαL, α P Vztεu pivq

χpαq1k0 if β “ UkαDk, k ě 1, α P Vztεu ending with L pvq

where the operator ‚ acts on a binary word ending with zero, by replacing
this last zero with a one, i.e. w1w2 . . . wn´10 “ w1w2 . . . wn´11.

Notice that χ is defined so that the image of any nonempty partial
v.a. skew DAP is a binary word that avoids both patterns 00 and 0110.
Furthermore, the image of any nonempty v.a. skew DAP ends with a 0. For
instance, we have

χpU4DLD2q “ χpU2DLq110 “ χpUDq10110 “ 010110 “ 011110.

We refer to Figure 2 for an illustration of the cases in the definition of
the bijection χ.

ϵ 1k´10

Dk α

χpαq1

α

χpαq10

α

Dk

χpαq1k0

piq piiq piiiq pivq pvq

Figure 2: Illustration of the map χ.

Theorem 7. The map χ induces a bijection between PVnztεu and Bpn´ 1q

for all n ě 1.

Proof. It follows from Theorem 6 and [18] (entry A130137) that PVnztεu and
Bpn´ 1q have the same cardinality for all n ě 1. Thus, it is enough to prove
the injectivity of χ. We proceed by induction on n. The statement is trivial
for n “ 1, 2. Now, let n ě 3, and let α, β P PVnztεu such that χpαq “ χpβq.

If χpαq “ 1k0, then both χpαq and χpβq belong to case piiq in the
definition of χ. If not, say for example α “ UAL with A P Vztεu, then
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1k0 “ χpαq “ χpUALq “ χpAq10, which implies χpAq “ 1k´1, and in turn
A “ Uk, which contradicts the fact that A is an element of Vztεu. The
hypothesis that α is of the form U ℓADℓ with ℓ ě 1 and A P Vztεu can be
ruled out with a similar reasoning. It now follows from the definition of χ
that α “ Uk`1Dk`1 “ β.

Otherwise, depending on their ending letters, χpαq and χpβq both either
belong to case piiiq (χpαq ends with 1), pivq (χpαq ends with 010), or pvq

(χpαq ends with 110) in the definition of χ. Say they both belong to case pvq,
for instance. Then, from the definition of χ, it follows that α “ UkADk and
β “ U ℓBDℓ for some k, ℓ ě 1 and A,B P Vztεu ending with L. Thus, we
have χpαq “ χpAq1k0 and χpβq “ χpBq1ℓ0. Suppose for a contradiction that
k ‰ ℓ, and without loss of generality, let us assume k ą ℓ. Then, χpαq “ χpβq

implies χpAq1k´ℓ “ χpBq. Since χpAq avoids 00 and ends with 0 (A P Vztεu),
it ends with 10, which implies χpBq ends with 111. Now, B cannot be of
the form UXL with X P Vztεu, otherwise χpBq would end with 010, and
in turn χpBq would not end with 111 anymore; moreover, B cannot end
with a down-step since β “ U ℓBDℓ, which yields a contradiction. Hence,
we have k “ ℓ, which implies χpAq “ χpBq. Since A,B P Vztεu, we have
χpAq “ χpBq, and, by induction, A “ B; thus, α “ β.

Cases piiiq and pivq are handled mutatis mutandis, which completes the
induction. The cardinality argument then proves the bijectivity.

4 Enumerating z.v.a. skew DAP

Once again, we use the same methodology and notation as in Sections 2
and 3 in order to enumerate z.v.a. skew DAPs and partial z.v.a. skew DAPs.
Then, we provide here all main results without the details of the proofs. The
first system of equations is:

$

’

’

&

’

’

%

f0pzq “ 1,
@k ą 0, fkpzq “ zfk´1pzq,
@k ě 0, gkpzq “ z

ř

iě1pfk`ipzq ` hk`ipzqq,
@k ě 0, hkpzq “ zgk`1pzq.

Redoing the same work as in Sections 2 and 3, we are led to the following
results.

Theorem 8. We have

F puq “
1

1 ´ zu
, Gpuq “

z2

p1 ´ zuqp1 ´ z ´ z4q
,
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Hpuq “
z4

p1 ´ zuqp1 ´ z ´ z4q
,

and thus,

F puq `Gpuq `Hpuq “
1 ´ z ` z2

p1 ´ zuqp1 ´ z ´ z4q
.

The first terms of the series expansion of F puq `Gpuq `Hpuq are

1 ` uz `
`

u2 ` 1
˘

z2 `
`

u3 ` u` 1
˘

z3 `
`

u4 ` u2 ` u` 2
˘

z4

`
`

u5 ` u3 ` u2 ` 2u` 2
˘

z5 `
`

u6 ` u4 ` u3 ` 2u2 ` 2u` 3
˘

z6

`
`

u7 ` u5 ` u4 ` 2u3 ` 2u2 ` 3u` 4
˘

z7 ` O
`

z8
˘

.

Therefore, we can obtain the coefficient rukspF puq `Gpuq `Hpuqq of uk in
the series expansion of F puq `Gpuq `Hpuq.

Corollary 5. We have

rukspF puq `Gpuq `Hpuqq “
1 ´ z ` z2

1 ´ z ´ z4
zk.

Remark 3. Let PZ be the matrix PZ “ rpZn,ksn,kě0, where pZn,k is the number
of z.v.a. skew DAPs of length n ending at ordinate k, i.e. the coefficient of
zn in the series expansion of rukspF puq `Gpuq `Hpuqq. The first values of
PZ are

PZ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
2 1 1 0 1 0 0 0 . . .
2 2 1 1 0 1 0 0
3 2 2 1 1 0 1 0
4 3 2 2 1 1 0 1

...
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Since F puq `Gpuq `Hpuq “
gpzq

1´ufpzq
, with fpzq “ z and gpzq “ 1´z`z2

1´z´z4
, the

matrix PZ corresponds to the Riordan array
ˆ

1 ´ z ` z2

1 ´ z ´ z4
, z

˙

.

Now we plug in u “ 0 and u “ 1 to get the generating function for v.a.
skew DAPs and partial v.a. skew DAPs, respectively.
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Theorem 9. The generating function for the total number of z.v.a. skew
DAPs with respect to the length is given by:

F p0, zq `Gp0, zq `Hp0, zq “
1 ´ z ` z2

1 ´ z ´ z4
,

and an asymptotic of the n-th term is

a2 ´ a` 1

4a4 ` a
¨
`

pa` 1q
`

a2 ´ a` 1
˘˘n

« 0.4382 ¨ 1.3803n,

where a « 0.7244919590 is the smallest root (modulus-wise) of z4 ` z ´ 1.

A simple calculation on generating functions allows to prove that the
number cn of n-length z.v.a. skew DAPs satisfies c0 “ c2 “ c3 “ 1, c1 “ 0,
and cn “ cn´1 ` cn´4 for n ě 4. The leading terms of the series expansion of
F p0, zq `Gp0, zq `Hp0, zq are:

1 ` z2 ` z3 ` 2z4 ` 2z5 ` 3z6 ` 4z7 ` 6z8 ` 8z9 ` O
`

z10
˘

.

The coefficients spell out sequence A103632 in [18], and the n-th term cn
satisfies

cn “

tn
2

u
ÿ

k“0

ˆ

t2n´3k´1
2 u

n´ 2k

˙

.

Theorem 10. The generating function for the total number of partial z.v.a.
skew DAPs with respect to the length is given by:

F p1, zq `Gp1, zq `Hp1, zq “
z2 ´ z ` 1

p´1 ` zq pz4 ` z ´ 1q
,

and an asymptotic of the n-th term is

a2 ´ a` 1

a p4a3 ` 1q p1 ´ aq
¨
`

pa` 1q
`

a2 ´ a` 1
˘˘n

« 1.5905 ¨ 1.3803n,

where a « 0.7244919590 is the smallest root (modulus-wise) of z4 ` z ´ 1.

A simple calculation on generating functions allows to prove that the
number dn of n-length partial z.v.a. skew DAPs satisfies d0 “ d1 “ 1, d2 “ 2,
d3 “ 3, d4 “ 5 and dn “ 2dn´1 ´ dn´2 ` dn´4 ´ dn´5 for n ě 5. The leading
terms of the series expansion of F p1, zq `Gp1, zq `Hp1, zq are:

1 ` z ` 2z2 ` 3z3 ` 5z4 ` 7z5 ` 10z6 ` 14z7 ` 20z8 ` 28z9 ` O
`

z10
˘

.

Finally, we obtain the following.
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Corollary 6. An asymptotic approximation for the average of the ordinate
of the endpoint in all partial z.v.a. skew DAPs of a given length is 2.6296.

It follows from Theorem 9 and [18] (entry A103632) that n-length z.v.a.
skew DAPs are in bijection with palindromic compositions of n ´ 2 that
have parts in t2, 1, 3, 5, 7, 9, . . .u, where a palindromic composition of n is
a composition pc1, c2, . . . , ckq, c1 ` c2 ` . . . ` ck “ n, that reads the same
backwards as forwards; for instance, p3, 1, 5, 2, 5, 1, 3q is a palindromic com-
position of 20 (see [13]). Let Cpn´ 2q be the set of such compositions, and
let C “

Ť

ně0 Cpnq. We shall now provide an explicit bijection.

Definition 5. Let us recursively define the map ψ : Z ÝÑ C as follows. For
β P Z, we set:

ψpβq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ϵ if β “ UD piq
p1q if β “ U2D2 piiq
p2q if β “ U2DL piiiq
p3q if β “ U3D2L pivq

p1, ψpUaDk´2Bq, 1q if β “ Ua`2DkB, a ě 1, k ě 3 pvq

p2, ψpUaBq, 2q if β “ Ua`2DLB, a ě 1, B ‰ ε pviq

`2ψpUaDk`1Bq`2 if β “ Ua`2D2LDkB, a ě 2, k ě 1 pviiq

where B is a suffix of a z.v.a. skew DAP, and where `2px1, x2, . . . , xn´1, xnq`2 :“
ppx1 ` 2q, x2, . . . , xn´1, pxn ` 2qq for n ě 2; for the case n “ 1, we define
`2px1q`2 :“ px1 ` 4q.

For instance, we have

ψpU7D2LD2LDq “ `2ψpU5D3LDq`2 “ `2p1, ψpU3DLDq, 1q`2

“ `2p1, 2, ψpUDq, 2, 1q`2 “ p3, 2, 2, 3q.

We refer to Figure 3 for an illustration of the nontrivial cases in the
definition of the bijection ψ.
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Ua

Dk

B Ua B
Ua Dk

B

pvq pviq pviiq

p1, ψpUaDk´2Bq, 1q p2, ψpUaBq, 2q `2ψpUaDk`1Bq`2

Figure 3: Illustration of the map ψ (the three nontrivial cases).

Theorem 11. The map ψ induces a bijection between Zn and Cpn´ 2q for
all n ě 2.

Proof. Since Zn and Cpn ´ 2q have the same cardinality for all n ě 2, it
is enough to prove that ψ induces an injection from Zn to Cpn ´ 2q. We
proceed by induction on n. The statement is trivial for n “ 2, 3. Now,
let n ě 4, and let α, β P Zn such that ψpαq “ ψpβq. If ψpαq P tp2q, p3qu,
then we immediately get α “ β. Otherwise, depending on their starting
letter, ψpαq and ψpβq both either belong to case pvq, pviq, or pviiq in the
definition of ψ. Say they both belong to case pvq, for instance. Then, from
the definition of ψ, it follows that α “ Ua1`2Dk1B1 and β “ Ua2`2Dk2B2 for
some a1, a2, k1, k2, B1, B2. Thus, we have ψpαq “ p1, ψpUa1Dk1´2B1q, 1q and
ψpβq “ p1, ψpUa2Dk2´2B2q, 1q, and in turn, ψpUa1Dk1´2B1q “ ψpUa2Dk2´2B2q.
Since Ua1Dk1´2B1 and Ua2Dk2´2B2 are both elements of Zn´2, and ψ is
(by induction) injective from Zn´2 to Cpn ´ 4q, we deduce Ua1Dk1´2B1 “

Ua2Dk2´2B2, which implies α “ β. Cases pviq and pviiq are handled mutatis
mutandis, which completes the induction. The cardinality argument then
proves the bijectivity.
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