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CONSECUTIVE PATTERN-AVOIDANCE IN CATALAN WORDS

ACCORDING TO THE LAST SYMBOL

Jean-Luc Baril1 , Daniela Colmenares2 , José L. Raḿırez2,* ,
Emmanuel D. Silva2 , Lina M. Simbaqueba2 and Diana A. Toquica2

Abstract. We study the distribution of the last symbol statistics on the sets of Catalan words
avoiding a consecutive pattern of length at most three. For each pattern p, we provide a bivariate
generating function, where the coefficient cp(n, k) of xnyk in its series expansion is the number of
length n Catalan words avoiding p and ending with the symbol k. We deduce recurrence relations or
closed forms for cp(n, k) and we provide asymptotic approximations for the expectation of the last
symbol on all Catalan words avoiding p. Finally, we characterize the sequence cp(n, k) using Riordan
arrays.
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1. Introduction

Restricted growth words w = w1w2 · · ·wn are words defined over the set of non-negative integers by w1 = 0

and 0 ≤ wi ≤ st(w1 · · ·wi−1) + 1, where st is an integer statistic. Whenever the statistic st returns the last
symbol of a word, i.e., st(w1 · · ·wi−1) = wi−1, the restricted growth words are called Catalan words, that is,
the word w = w1w2 · · ·wn is a Catalan word if w1 = 0 and 0 ≤ wi ≤ wi−1 + 1 for i = 2, . . . , n. For n ≥ 0, let Cn
denote the set of Catalan words of length n. For instance, C3 = {000, 001, 010, 011, 012}. The cardinality of Cn
is given by the Catalan number Cn = 1

n+1

(
2n
n

)
, see [1], Exercise 80. Catalan words have already been studied

in the context of exhaustive generation of Gray codes for growth-restricted words [2]. More recently, Baril et al.
[3, 4] study the distribution of descents on restricted Catalan words avoiding a pattern or a pair of patterns of
length at most three. Ramı́rez and Rojas [5] also study the distribution of descents for Catalan words avoiding
consecutive patterns of length at most three. Baril, González, and Ramı́rez [6] enumerate Catalan words avoiding
a classical pattern of length at most three according to the length and the value of the last symbol. They also
give the exact value or an asymptotic for the expectation of the last symbol. Also, we refer to [7, 8], where the
authors study several combinatorial statistics on the polyominoes associated with words in Cn.
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The goal of this work is to complement all these studies by providing enumerative results for Catalan words
avoiding a consecutive pattern of length at most three with respect to the length and the value of the last symbol.
Using classical methods presented in [9, 10], we also give the exact value or an asymptotic approximation for the
expectation of the last symbol for these words. The study of consecutive patterns was introduced by Elizalde
and Noy [11] in the context of permutations. Since then, several results have appeared in the literature, see for
example [12–14] and references therein.

The remainder of this paper is structured as follows. In Section 2, we introduce the notation that will be used
in this work. In Section 3, we study the distribution of the last symbol in the set of Catalan words avoiding
consecutive patterns of length 2 providing the bivariate generating function that counts Catalan words avoiding
a given pattern with respect to the length and the last symbol and a matrix with the total number of words for
each length and last symbol. Also, we present a recurrence and an asymptotic approximation for the expectation
of the last symbol for these patterns. In Section 4, we present the same for the consecutive patterns of length 3
including bijections between some of them. Finally, in Section 5 we show how the matrices presented above are
Riordan arrays.

2. Notations

For an integer r ≥ 2, a consecutive pattern p = p1p2 · · · pr is a word (of length r) over the set {0, 1, . . . , r− 1}
satisfying the condition: if j > 0 appears in p, then j − 1 also appears in p. A Catalan word w = w1w2 · · ·wn

contains the consecutive pattern p = p1p2 · · · pr if there exists a subsequence wiwi+1 · · ·wi+r−1 (for some i ≥ 1)
of w which is order-isomorphic to p1p2 . . . pr. We say that w avoids the consecutive pattern p whenever w
does not contain the consecutive pattern p. For example, the Catalan word 0123455543 avoids the consecutive
pattern 001 and contains one subsequence isomorphic to the pattern 210.

For n ≥ 0, let Cn(p) denote the set of Catalan words of length n avoiding the consecutive pattern p. We
denote by cp(n) the cardinality of Cn(p), C(p) :=

⋃
n≥0 Cn(p), and C(p)+ := C(p) \ {ϵ}. We denote by last(w)

the last symbol of w. Let Cn,k(p) denote the set of Catalan words w ∈ Cn(p) such that last(w) = k, and let

cp(n, k) := |Cn,k(p)|. Obviously, we have cp(n) =
∑n−1

k=0 cp(n, k).
We introduce the bivariate generating function

Hp(x, y) :=
∑

w∈C(p)+
x|w|ylast(w) =

∑
n≥1, k≥0

cp(n, k)x
nyk,

and we set

Hp(x) :=
∑

w∈C(p)+
x|w| = Hp(x, 1).

Notice that these generating functions do not consider the empty word. Let Tp be the infinite matrix Tp :=
(cp(n, k))n≥1,k≥0.

The expectation of the last symbol on all Catalan words in Cn(p) is given by (see [9])

ap(n) :=
[xn]∂yHp(x, y)|y=1

cp(n)
=

[xn]∂yHp(x, y)|y=1

[xn]Hp(x, 1)
.

In order to obtain an asymptotic approximation for ap(n), we will use classical methods presented in [9, 10]
on the two generating functions [xn]∂yHp(x, y)|y=1 and [xn]Hp(x, 1).

Throughout this work, we will often use the first return decomposition of a Catalan word w, which is
w = 0(w′ + 1)w′′, where w′ and w′′ are Catalan words, and where (w′ + 1) is the word obtained from w′ by
adding 1 at all these symbols (for instance if w′ = 012012 then (w′ + 1) = 123123). As an example, the first
return decomposition of w = 0122123011201 is given by setting w′ = 011012 and w′′ = 011201.
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3. Consecutive patterns of length 2

The goal of this section is to study the distribution of the last symbol in the set of Catalan words avoiding a
consecutive pattern of length 2. For each pattern p ∈ {00, 01, 10}, we provide the bivariate generating function
Hp(x, y) that counts Catalan words with respect to the length and the last symbol.

Theorem 3.1. We have

H00(x, y) =
2x

1 + x− 2xy +
√
1− 2x− 3x2

.

Proof. Let w denote a non-empty Catalan word in C(00), and let w = 0(w′ +1)w′′ be the first return decompo-
sition, where w′, w′′ ∈ C(00). If w′′ = ϵ, then w = 0(w′ +1), where w′ is possibly empty. The generating function
for this case is x + xyH00(x, y). If w

′′ is non-empty, then w′ is necessarily non-empty and this produces the
generating function xH00(x)H00(x, y). Therefore, we have the functional equation

H00(x, y) = x+ xyH00(x, y) + xH00(x)H00(x, y),

where H00(x) = H00(x, 1), satisfies the functional equation H00(x) = x+ xH00(x) + xH00(x)
2. Solving these

equations, we obtain the desired result.

Theorem 3.2. For n ≥ 2 and 0 ≤ k < n, we have

c00(n, k) =

n−1∑
i=k−1

c00(n− 1, i)− c00(n− 1, k),

anchored with c00(1, 0) = 1 and c00(n, k) = 0 for k < 0 or 1 ≤ n ≤ k. Moreover, for n ≥ 2, 2 ≤ k < n, we have

c00(n, k) = c00(n, k − 1)− c00(n− 1, k) + c00(n− 1, k − 1)− c00(n− 1, k − 2).

Proof. Let w = w1 · · ·wn denote a non-empty Catalan word in Cn,k(00), with n ≥ 2. So, the subword w1 · · ·wn−1

necessarily belongs to Cn−1,i(00) for some i ≥ k − 1, i ̸= k (otherwise the word w would end with kk). Conse-
quently, we obtain the first equality. In addition, if we consider the difference c00(n, k)− c00(n, k − 1), then we
deduce the second equality.

The first few rows of the matrix T00 are

T00 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0
3 2 3 0 1 0 0 0 0
6 7 3 4 0 1 0 0 0
15 14 12 4 5 0 1 0 0
36 37 24 18 5 6 0 1 0
91 90 67 36 25 6 7 0 1


The Catalan words corresponding to the bold coefficients in the above array are

C4,0(00) = {0120}, C4,1(00) = {0101, 0121}, C4,2(00) = {}, and C4,3(00) = {0123}.
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φ(w) = UFDFFUUDUDFDF

Figure 1. Motzkin path corresponding to the word w = 01201234343423 ∈ C14,3(00).

The matrix T00 coincides with the array A097609, in the OEIS [15], that counts the number of Motzkin paths
with respect to the length and the number of horizontal steps at level 0. Recall that a length n Motzkin path is
a lattice path in N2, starting at the origin, ending at (n, 0), consisting of steps U = (1, 1), D = (1,−1), and F =
(1, 0). A constructive bijection ϕ between C(00) and the set of Motzkin paths can be defined recursively as follows:
ϕ(0) = ϵ, ϕ(0(w′ + 1)) = Fϕ(w′), and ϕ(0(w′ + 1)w′′) = Uϕ(w′)Dϕ(w′′). Clearly, if w ∈ Cn,k(00) then ϕ(w) is
a Motzkin path of length n − 1 having k horizontal steps at level 0. For example, if w = 01201234343423 ∈
C14,3(00), then we have

ϕ(w) = Uϕ(01)Dϕ(01234343423) = UFϕ(0)DFϕ(0123232312) = UFDFFϕ(012121201)

= UFDFFUϕ(010101)Dϕ(01) = UFDFFUUϕ(0)Dϕ(0101)DFϕ(0)

= UFDFFUUDUϕ(0)Dϕ(01)DF = UFDFFUUDUDFDF.

Figure 1 shows the corresponding Motzkin path with 3 horizontal steps at level 0.

Corollary 3.3. An asymptotic approximation for the expectation a00(n) of the last symbol over Cn(00)
is 2.

The last two theorems of this section have been already presented in [6], since Catalan words avoiding a
consecutive pattern p ∈ {01, 10} are those avoiding the corresponding classical pattern.

Theorem 3.4. We have

H01(x, y) =
x

1− x
, c01(n, k) =

{
1, if k = 0;
0, otherwise;

and a01(n) = 0.

Theorem 3.5. We have

H10(x, y) =
x

1− x(1 + y)
, c10(n, k) =

(
n− 1

k

)
and a10(n) =

n− 1

2
.

4. Consecutive patterns of length 3

In this section we investigate the distribution of the last symbol in the set of Catalan words avoiding a
consecutive pattern of length 3.

4.1. The consecutive pattern 012

Theorem 4.1. We have

H012(x, y) =
1− x+ xy − 3x2y − 2x3y2 − (1 + xy)

√
1− 2x− 3x2

2x(1− y + xy + x2y2)
.

Proof. Let w denote a non-empty Catalan word in C(012), and let w = 0(w′ + 1)w′′ be the first return
decomposition, where w′, w′′ ∈ C(012). If w′′ = ϵ, then w = 0, or w = 01(w′ + 1) with w′ ∈ C(012). The corre-
sponding generating function for these words is x+ x2y(1 +H012(x, y)). If w

′′ is non-empty, then w = 0w′′, or

http://oeis.org/A097609
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w = 01(w′ + 1)w′′, where w′ is possibly empty. This case produces the generating function

xH012(x, y) + x2(1 +H012(x))H012(x, y),

where (see Thm. 2.1 of [5])

H012(x) =
1− x−

√
1− 2x− 3x2

2x2
− 1

is the generating function for the number of non-empty Catalan words avoiding 012. Therefore, we have the
functional equation

H012(x, y) = x+ x2y(1 +H012(x, y)) + xH012(x, y) + x2(1 +H012(x))H012(x, y).

Solving this equation, we obtain the desired result.

Theorem 4.2. For n ≥ 2, 3 ≤ k ≤ n− 1, we have

c012(n, k) =

n−1∑
i=k−1

c012(n− 1, i)−
n−1∑

i=k−2

c012(n− 3, i),

and for n ≥ 2, k = 0, 1, we have

c012(n, k) =

n−1∑
i=k−1

c012(n− 1, i),

anchored with c012(1, 0) = 1 and c012(n, k) = 0 for k < 0 or 1 ≤ n ≤ k. Moreover, for n ≥ 4 and 3 ≤ k ≤ n− 1,
we have

c012(n, k) = c012(n, k − 1)− c012(n− 1, k − 2) + c012(n− 3, k − 3).

Proof. Let w = w1 · · ·wn denote a non-empty Catalan word in Cn,k(012), with n ≥ 2. So, the subword
w1 · · ·wn−1 necessarily belongs to Cn−1,i(012) for i ≥ k − 1, but we have not to consider the cases where
wn−3 ≥ wn−2 = k − 2 with wn−1 = k − 1 whenever they can occur, i.e. when k ≥ 2. Therefore, by summing
over all possible values of i, we obtain the first equality; whenever k = 0, 1, all i ≥ k − 1 have to be considered
which induces the second equality. Finally, by considering the difference c012(n, k) − c012(n, k − 1) whenever
n ≥ 4 and k ≥ 3, the third equality follows.

The first few rows of the matrix T012 are

T012 =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0
4 4 1 0 0 0 0 0 0
9 9 3 0 0 0 0 0 0
21 21 8 1 0 0 0 0 0
51 51 21 4 0 0 0 0 0
127 127 55 13 1 0 0 0 0
323 323 145 39 5 0 0 0 0


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ψ(w) = FUUFUDDUDD

Figure 2. Motzkin path corresponding to the word w = 0011222312 ∈ C10,2(012).

The Catalan words corresponding to the bold coefficients in the above array are

C4,0(012) = {0000, 0010, 0100, 0110}, C4,1(012) = {0001, 0011, 0101, 0111}, and

C4,2(012) = {0112}.

The matrix T012 coincides with the array A098979 that counts the number of Motzkin paths with respect
to the length and the length of the final run of down steps. Moreover, the row sums of T012 corresponds to
the sequence of Motzkin numbers A001006. A constructive bijection ψ can be defined recursively as follows:
ψ(ϵ) = ϵ, ψ(0w′) = Fψ(w′), and ψ(01(w′ + 1)w′′) = Uψ(w′)Dψ(w′′). Clearly, if w ∈ Cn,k(012), then ψ(w) is a
Motzkin path of length n where the length of its final descent is k. For example, if w = 0011222312 ∈ C10,2(012),
then we have

ψ(w) = Fψ(011222312)F = FUψ(0111201)Dψ(ϵ) = FUUψ(001)Dψ(01)D

= FUUFUDDUDD.

Figure 2 shows the corresponding Motzkin path with a final descent of length 2.

Corollary 4.3. An asymptotic approximation for the expectation a012(n) of the last symbol over Cn(012)
is 5/4.

4.2. The consecutive pattern 001 and 011

Theorem 4.4. We have

H001(x, y) =
2x

1− x2 − (2x− 2x2)y +
√
1− 4x+ 2x2 + x4

.

Proof. Let w denote a non-empty Catalan word in C(001), and let w = 0(w′ + 1)w′′ be the first return decom-
position, where w′, w′′ ∈ C(001). If w′′ = ϵ, then w = 0(w′ +1) with w′ possibly empty. The generating function
for this case is x+ xyH001(x, y). If w

′′ is non-empty, then w = 00 · · · 0 (with w′ = ϵ) or w = 0(w′ + 1)w′′ (with
w′ ̸= ϵ). This case produces the generating function

x2

1− x
+ xH001(x)H001(x, y),

where (see Thm. 2.3 of [5])

H001(x) =
1− x2 −

√
(1− x)(1− 3x− x2 − x3)

2(1− x)x
− 1

http://oeis.org/A098979
http://oeis.org/A001006
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is the generating function for the number of non-empty Catalan words avoiding the consecutive pattern 001.
Therefore, we have the functional equation

H001(x, y) = x+ xyH001(x, y) +
x2

1− x
+ xH001(x)H001(x, y).

Solving this equation, we obtain the desired result.

Theorem 4.5. We have H011(x, y) = H001(x, y).

Proof. There exists a bijection between the Catalan words avoiding 011 and those avoiding 001 preserving
the last symbol (see Thm. 2.4 of [5]). Indeed, the bijection comes from an algorithm explained in [5], which
consists in replacing, from left to right, each factor kj(k + 1) with the factor k(k + 1)j (j ≥ 2). For instance,
the bijection transforms w = 000123222321112001012 ∈ C(011) into 012333233321222011012 ∈ C(001). So,
the two bivariate generating functions are equal.

Theorem 4.6. Let p ∈ {011, 001}. Then, for n ≥ 2, 0 ≤ k ≤ n− 1, we have

cp(n, k) =

n−2∑
i=k−1

cp(n− 1, i)− cp(n− 2, k − 1),

anchored with cp(1, 0) = 1 and cp(n, k) = 0, otherwise. Moreover, for n ≥ 2 and 1 ≤ k ≤ n, we have

cp(n, k) = cp(n, k − 1)− cp(n− 1, k − 2)− cp(n− 2, k − 1) + cp(n− 2, k − 2).

Proof. Let w = w1 · · ·wn denote a non-empty Catalan word in Cn,k(001), with n ≥ 2. So, the subword
w1 · · ·wn−1 necessarily belongs to Cn−1,i(001) for i ≥ k − 1, but we have not to consider the words where
wn−2 = wn−1 = k − 1. Therefore, by summing over all possible values of i, we obtain the first equality. The
second equality follows from the difference c001(n, k)− c001(n, k − 1).

The first few rows of the matrix Tp, for p ∈ {011, 001} are

Tp =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
4 3 1 1 0 0 0 0 0
9 7 4 1 1 0 0 0 0
22 18 10 5 1 1 0 0 0
57 48 28 13 6 1 1 0 0
154 132 79 39 16 7 1 1 0
429 372 227 115 51 19 8 1 1


.

This array does not appear in the OEIS [15], however the first column (and the row sums) corresponds to the
sequence A105633 (this sequence also counts the number of Dyck paths of semilength n+ 1 avoiding UUDU).
The Catalan words corresponding to the bold coefficients in the above array are

C4,0(001) = {0000, 0100, 0110, 0120}, C4,1(001) = {0101, 0121, 0111},
C4,2(001) = {0122}, and C4,3(001) = {0123}.

http://oeis.org/A105633
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An asymptotic analysis of the generating functions [xn]∂yHp(x, y)|y=1 and [xn]Hp(x, 1), p ∈ {011, 001}, gives
the following result. The constant a is the solution closest to the origin of the polynomial z3 + z2 + 3z − 1.
Maple provides an explicit version if one asks for a simplification.

Corollary 4.7. For p ∈ {011, 001}, an asymptotic approximation for the expectation ap(n) of the last symbol
over Cn(p) is

a (1− a)
3 (

17a2 + 22a + 57
)2

4 (2a2 + 3a + 7)
2 ∼ 1.6785735141,

where a = 1
3

(
26 + 6

√
33
) 1

3 − 8
3

(
26 + 6

√
33
)− 1

3 − 1
3 .

4.3. The consecutive pattern 010

Theorem 4.8. We have

H010(x, y) =
1− 2xy + x2 −

√
1− 4x+ 2x2 − 4x3 + x4

2(1 + x2 − y − x2y + xy2)
.

Proof. Let w denote a non-empty Catalan word in C(010), and let w = 0(w′ + 1)w′′ be the first return decom-
position, where w′, w′′ ∈ C(010). If w′′ = ϵ, then w = 0(w′ +1) with w′ possibly empty. The generating function
for this case is x+ xyH010(x, y). If w

′′ is non-empty, then w′ ̸= 0. This case produces the generating function

x(H010(x)− x+ 1)H010(x, y),

where (see Thm. 2.3 of [5])

H010(x) =
1 + x2 −

√
(1 + x2)(1− 4x+ x2)

2x
− 1

is the generating function of the non-empty Catalan words avoiding the consecutive pattern 010. Therefore, we
have the functional equation

H010(x, y) = x+ xyH010(x, y) + x(H010(x)− x+ 1)H010(x, y).

Solving this equation, we obtain the desired result.

Theorem 4.9. For n ≥ 2, 0 ≤ k ≤ n− 1, we have

c010(n, k) =

n−2∑
i=k−1

c010(n− 1, i)− c010(n− 2, k),

anchored with c010(1, 0) = 1 and c010(n, k) = 0, otherwise. Moreover, for n ≥ 2 and 2 ≤ k ≤ n− 1, we have

c010(n, k) = c010(n, k − 1)− c010(n− 1, k − 2)− c010(n− 2, k) + c010(n− 2, k − 1).

Proof. Let w = w1 · · ·wn denote a non-empty Catalan word in Cn,k(010), with n ≥ 2. So, the subword
w1 · · ·wn−1 necessarily belongs to Cn−1,i(010) for i ≥ k − 1, but we do not have to consider the words where
wn−2 = k and wn−1 = k + 1. Therefore, by summing over all possible values of i we obtain the first equality.
Moreover, if we consider the difference c010(n, k)− c010(n, k − 1), then we have the second equality.
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The first few rows of the matrix T010 are

T010 =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
3 3 3 1 0 0 0 0 0
9 8 6 4 1 0 0 0 0
25 25 16 10 5 1 0 0 0
73 74 51 28 15 6 1 0 0
223 223 159 91 45 21 7 1 0
697 696 496 296 150 68 28 8 1


This array does not appear in the OEIS [15], however, the first column of this matrix is the sequence A101499

(this sequence also counts the number of peakless Motzkin paths of length n in which the horizontal steps at
level greater than or equal to 1 come in 2 colors). The row sums of T010 corresponds to the sequence A187256.
The Catalan words corresponding to the bold coefficients in the above array are

C4,0(010) = {0000, 0110, 0120}, C4,1(010) = {0001, 0011, 0111},
C4,2(010) = {0012, 0112, 0122}, and C4,3(010) = {0123}.

Corollary 4.10. An asymptotic approximation for the expectation a010(n) of the last symbol over Cn(010)
is 2.

4.4. The consecutive pattern 201

Theorem 4.11. We have

H201(x, y) =
(1− x)

(
1 + 2x−

√
1− 4x+ 4x3

)
(2− x)

(
1− 2xy +

√
1− 4x+ 4x3

) .
Proof. Let w denote a non-empty Catalan word in C(201) and let w = 0(w′+1)w′′ be first return decomposition,
where w′, w′′ ∈ C(201). If w′′ = ϵ, then w = 0(w′ + 1) with w′ possibly empty. The generating function for this
case is x + xyH201(x, y). If w

′′ ̸= ϵ and w′ = ϵ, then w = 0w′′ and the generating function for this case is
xH201(x, y). If w

′′ ̸= ϵ and w′ ̸= ϵ, then w = 0(w′ + 1)w′′ and we consider two subcases:
(i) If w′ ends with 0, then w′ = w′′′0 with w′′′, w′′ ∈ C(201). The generating function for this case is x2(1 +

H201(x))H201(x, y), where

H201(x) =
1− 2x+ 2x2 −

√
1− 4x+ 4x3

2(2− x)x2
− 1,

is the generating function for the total number of non-empty Catalan words avoiding 201 (see Thm. 2.5 of [5]).
(ii) If w′ does not end with 0, then the last symbol of (w′ +1) is at least 2, which implies that w′′ necessarily

is 0 or 0w′′′ with w′′′ ∈ C(201). So, in this case the generating function is

x(H201(x)− xH201(x)− x)x(H201(x, y) + 1).

Therefore, bringing together all the above subcases, we have the functional equation

H201(x, y) = x+ xyH201(x, y) + xH201(x, y) + x2(1 +H201(x))H201(x, y)+

x(H201(x)− xH201(x)− x)x(H201(x, y) + 1).

http://oeis.org/A101499
http://oeis.org/A187256
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Solving this equation, we obtain the desired result.

Theorem 4.12. Let n ≥ 2, 1 ≤ k ≤ n− 1, we have

c201(n, k) =

n−2∑
i=k−1

c201(n− 1, i)−
n−3∑

i=k+1

c201(n− 2, i),

and for n ≥ 2, k = 0,

c201(n, 0) =

n−2∑
i=0

c201(n− 1, i),

anchored with c201(1, 0) = 1, and c201(n, k) = 0 otherwise. Moreover, for n ≥ 3 and 3 ≤ k < n, we have

c201(n, k) = c201(n, k − 1)− c201(n− 1, k − 2) + c210(n− 2, k).

Proof. Let w = w1 · · ·wn denote a non-empty Catalan word in Cn,k(201), with n ≥ 2. So, the subword
w1 · · ·wn−1 necessarily belongs to Cn−1,i(201) for i ≥ k − 1, but we do not have to consider the words where
wn−2 > k and wn−1 = k−1. Therefore, by summing over all possible values of i we obtain the first equality when-
ever k ≥ 1, and the second equality for k = 0. Finally, by considering the difference c201(n, k)− c201(n, k − 1),
we obtain the third equality.

The first few rows of the matrix T201 are

T201 =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
5 5 3 1 0 0 0 0 0
14 13 9 4 1 0 0 0 0
41 37 26 14 5 1 0 0 0
124 110 78 45 20 6 1 0 0
384 338 240 144 71 27 7 1 0
1212 1062 756 463 243 105 35 8 1


This array does not appear in OEIS [15], however, the first column of this matrix is the sequence A159769

(this sequence also counts the number of Dyck paths of semilength n − 1 avoiding DDUUU).The row sums
of T201 corresponds to the sequence A159773. The Catalan words corresponding to the bold coefficient in the
above array are

C5,1(201) = {00001, 00011, 00101, 00111, 00121,
01001, 01011, 01101, 01111, 01121, 01211, 01221, 01231}

Corollary 4.13. An asymptotic approximation for the expectation a201(n) of the last symbol over Cn(201) is

−128a7 + 352a5 − 284a3 + 55a

16a5 + 24a4 − 12a3 − 24a2 + 2a + 6
∼ 2.070578537,

where a = −
√
3
3 cos

(
1
6 arctan

(
3
√
111
5

)
+ π

6

)
+ sin

(
1
6 arctan

(
3
√
111
5

)
+ π

6

)
is the solution closest to the origin

of 4z3 − 4z + 1.

http://oeis.org/A159769
http://oeis.org/A159773
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4.5. The consecutive pattern 101

Theorem 4.14. We have

H101(x, y) =
x
(
2− x+ 2x2 − x3 − x

√
1− 4x+ 2x2 − 4x3 + x4

)
(1− x+ x2)(1− 2xy + x2 +

√
1− 4x+ 2x2 − 4x3 + x4)

.

Proof. Let w denote a non-empty Catalan word in C(101), and let w = 0(w′ + 1)w′′ be the first return decom-
position, where w′, w′′ ∈ C(101). If w′′ = ϵ, then w = 0(w′ +1) with w′ possibly empty. The generating function
for this case is x+ xyH101(x, y). If w

′′ is non-empty and w′ = ϵ, then the corresponding generating functions is
xH101(x, y). If w

′ and w′′ are non-empty, we distinguish two cases.
(i) If w′ ends with 0 then w′ = v0 with v ∈ C(101). This implies that w′′ cannot start with 01, which means

that w′′ = 0w′′′ with w′′′ ∈ C(101). The generating function for this case is x2(1 +H101(x))x(1 +H101(x, y)),
where

H101(x) =
1− x2 −

√
(1 + x2)(1− 4x+ x2)

2x(1− x+ x2)
− 1

is the generating function for the number of all non-empty Catalan words avoiding 101 (see Thm. 2.3 of [5]).
(ii) If w′ does not end with 0 then w′′ has no more restriction, and the generating function for this case is

x(H101(x)− xH101(x)− x)H101(x, y).

Therefore we have the functional equation

H101(x, y) = x+ xyH101(x, y) + xH101(x, y) + x2(1 +H101(x))x(1 +H101(x, y))+

x(H101(x)− xH101(x)− x)H101(x, y).

Solving this equation, we obtain the desired result.

Theorem 4.15. For n ≥ 2, 1 ≤ k ≤ n, we have

c101(n, k) =

n−2∑
i=k−1

c101(n− 1, i)− c101(n− 2, k),

and for n ≥ 2,

c101(n, 0) =

n−2∑
i=0

c101(n− 1, i),

anchored with c101(1, 0) = 1, and c101(n, k) = 0 otherwise. Moreover, for n ≥ 2 and 2 ≤ k ≤ n, we have

c101(n, k) = c101(n, k − 1)− c101(n− 1, k − 2)− c101(n− 2, k) + c101(n− 2, k − 1).

Proof. Let w = w1 · · ·wn denote a non-empty Catalan word in Cn,k(101), with n ≥ 2. So, the subword
w1 · · ·wn−1 necessarily belongs to Cn−1,i(101) for i ≥ k − 1, but we do not have to consider the words where
where wn−2 = k and wn−1 = k − 1. By summing over all possible values of i we obtain the first equality for
k ≥ 1, and the second for k = 0. Finally, by considering the difference c101(n, k)− c101(n, k − 1), we have the
third equality.
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The first few rows of the matrix T101 are

T101 =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
5 4 3 1 0 0 0 0 0
13 11 7 4 1 0 0 0 0
36 32 20 11 5 1 0 0 0
105 94 62 33 16 6 1 0 0
317 285 192 107 51 22 7 1 0
982 888 603 347 172 75 29 8 1


This array does not appear in the OEIS [15], however, the first column (and the row sums) of this matrix
corresponds to the sequence A114465 (this sequence also counts the number of Dyck paths semilength n having
no ascents of length 2 that start at an odd level). The Catalan words corresponding to the bold coefficients in
the above array are

C4,0(101) = {0000, 0010, 0100, 0110, 0120}, C4,1(101) = {0001, 0011, 0111, 0121},
C4,2(101) = {0012, 0112, 0122}, and C4,3(101) = {0123}.

Corollary 4.16. An asymptotic approximation for the expectation a101(n) of the last symbol over Cn(101) is

13 + 8
√
3

7 + 4
√
3

∼ 1.928203230.

4.6. The consecutive pattern 000

Theorem 4.17. We have

H000(x, y) =
2x(1 + x)

1 + x+ x2(1− 2y)− 2xy +
√
1− 2x− 5x2 − 6x3 − 3x4

.

Proof. Let w denote a non-empty Catalan word in C(000), and let w = 0(w′+1)w′′ be the first return decompo-
sition, where w′, w′′ ∈ C(000). If w′′ = ϵ, then w = 0(w′+1) with w′ possibly empty. The generating function for
this case is x+ xyH000(x, y). If w

′′ is non-empty and w′ = ϵ, then w′′ cannot start with 00. The corresponding
generating function is xH000,00(x, y), where H000,00(x, y) is the bivariate generating function for Catalan words
in C(000) that do not start with 00. By counting by the complement we have

H000,00(x, y) = x+ xyH000(x, y) + xH000(x)H000(x, y),

where (see Thm. 2.8 of [5])

H000(x) =
1 + x+ x2 −

√
(1− x− x2)2 − 4x2(1 + x)2

2x(1 + x)
− 1.

If w′ and w′′ are non-empty, then the generating function is xH000(x)H000(x, y). Therefore, we have the
functional equation

H000(x, y) = x + xyH000(x, y) + x(x + xyH000(x, y) + xH000(x)H000(x, y)) + xH000(x)H000(x, y).

http://oeis.org/A114465
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Solving this equation, we obtain the desired result.

Theorem 4.18. For n ≥ 2, 1 ≤ k ≤ n, we have

c000(n, k) =
∑

i≥k−1

c000(n− 1, i)− c000(n− 3, k − 1)−
∑

i≥k+1

c000(n− 3, i),

and for n ≥ 2,

c000(n, 0) =

n−1∑
m=0

1

m+ 1

n−m−1∑
i=⌈n/2⌉−m−1

(−1)i
(
2m

m

)(
m+ i

i

)(
m+ i+ 1

n−m− i− 1

)
,

anchored with c000(1, 0) = 1, and c000(n, k) = 0, otherwise.

Proof. Let w = w1 · · ·wn denote a non-empty Catalan word in Cn,k(000), with n ≥ 2. So, the subword
w1 · · ·wn−1 necessarily belongs to Cn−1,i(000) for i ≥ k − 1, but we do not have to consider the words where
wn−2 = k and wn−1 = k. Since a word w′ ending with kk in Cn−1,k(000) is of the form w′ = w′′k − 1kk, or
w′ = w′′ikk, i ≥ k + 1, the number of such words is given by c000(n− 3, k − 1) +

∑
i≥k+1

c000(n− 3, i). Therefore,

we have

c000(n, k) =
∑

i≥k−1

c000(n− 1, i)− c000(n− 3, k − 1)−
∑

i≥k+1

c000(n− 3, i).

The second relation is given in the OEIS [15].

Notice that the sequence c000(n, 0) corresponds to A061639. This sequence counts the number of planar
planted trees with n non-root nodes and every 2-valent node isolated.

The first few rows of the matrix T000 are

T000 =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
4 3 3 1 0 0 0 0 0
10 10 6 4 1 0 0 0 0
28 29 19 10 5 1 0 0 0
85 84 60 32 15 6 1 0 0
262 262 183 107 50 21 7 1 0
829 830 586 344 175 74 28 8 1


This array does not appear in the OEIS [15], however the row sums of T000 corresponds to the sequence

A247333. The Catalan words corresponding to the bold coefficients in the above array are

C4,0(000) = {0010, 0100, 0110, 0120}, C4,1(000) = {0011, 0101, 0121},
C4,2(000) = {0012, 0112, 0122}, and C4,3(000) = {0123}.

Corollary 4.19. An asymptotic approximation for the expectation a000(n) of the last symbol over Cn(000)
is 2.

http://oeis.org/A061639
http://oeis.org/A247333
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4.7. The consecutive pattern 210

Theorem 4.20. We have

H210(x, y) =
(2− x)x

1− x− x3 − 2xy + x2(1 + y) +
√
1− 4x+ 4x3

.

Proof. Let w denote a non-empty Catalan word in C(210), and let w = 0(w′ + 1)w′′ be the first return decom-
position, where w′, w′′ ∈ C(210). If w′′ = ϵ, then w = 0(w′ +1) with w′ possibly empty. The generating function
for this case is x + xyH210(x, y). If w

′′ is non-empty and w′ = ϵ, then the corresponding generating function
is xH210(x, y). If w

′ and w′′ are not empty, then w′ cannot end with a descent, ab (a > b), that is, w′ = 0 or
w′ = vb where v = v1 . . . vr ∈ C(210) with r ≥ 1 and b = vr or b = vr +1. Therefore, the generating function for
this case is

x2H210(x, y) + 2x2H210(x)H210(x, y),

where (see Thm. 2.9 in [5])

H210(x) =
1− 2x+ 2x2 −

√
1− 4x+ 4x3

2(2− x)x2
− 1.

Therefore, we have the functional equation

H210(x, y) = x+ xyH210(x, y) + xH210(x, y) + x2H210(x, y) + 2x2H210(x)H210(x, y)

Solving this equation, we obtain the desired result.

Theorem 4.21. For n ≥ 2, 1 ≤ k ≤ n, we have

c210(n, k) =
∑

i≥k−1

c210(n− 1, i)− c210(n− 3, k + 1)−
n−2−k∑
i=1

(2i+ 1) · c210(n− 3, k + i+ 1),

and for n ≥ 2,

c210(n, 0) =
∑
i≥0

c210(n− 1, i)− c210(n− 3, 1)−
n−2∑
i=1

(2i+ 1) · c210(n− 3, i+ 1),

anchored with c210(1, 0) = 1, and c210(n, k) = 0 otherwise.

Proof. Let w = w1 · · ·wn denote a non-empty Catalan word in Cn,k(210), with n ≥ 2. So, the subword
w1 · · ·wn−1 necessarily belongs to Cn−1,i(210) for i ≥ k − 1, but we do not have to consider the words where
wn−2 > wn−1 > k. Since a word w′ ending with ji, j > i > k in Cn−1,i(210) is of the form w′ = w′′ji, where
w′′ ∈ Cn−3,j−1(210) or w

′′ ∈ Cn−3,j(210) the number of such words is given by∑
i≥k+1

∑
j≥i+1

c210(n− 3, j − 1) +
∑

i≥k+1

∑
j≥i+1

c210(n− 3, j)

=

n−2−k∑
i=1

i · c210(n− 3, k + i) +

n−2−k∑
i=0

(i+ 1) · c210(n− 3, k + i+ 1)

= c210(n− 3, k + 1) +

n−2−k∑
i=1

(2i+ 1) · c210(n− 3, k + i+ 1).
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Finally, we obtain the recursion

c210(n, k) =
∑

i≥k−1

c210(n− 1, i)− c210(n− 3, k + 1)−
n−2−k∑
i=1

(2i+ 1) · c210(n− 3, k + i+ 1).

The case where k = 0 can be obtained mutatis mutandis.

Notice that the sequence c210(n, 0) corresponds to A114465. This sequence counts the number of Dyck paths
of length 2n having no ascents of length 2 that start at an odd level.

The first few rows of the matrix T210 are

T210 =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
5 5 3 1 0 0 0 0 0
13 14 9 4 1 0 0 0 0
36 40 28 14 5 1 0 0 0
105 118 87 48 20 6 1 0 0
317 359 273 161 75 27 7 1 0
982 1118 869 536 270 110 35 8 1


This array does not appear in the OEIS [15], however the row sums of T210 corresponds to the sequence A159771.
The Catalan words corresponding to the bold coefficients in the above array are

C4,0(210) = {0000, 0010, 0100, 0110, 0120}, C4,1(210) = {0001, 0011, 0101, 0111, 0121},
C4,2(210) = {0012, 0112, 0122}, and C4,3(210) = {0123}.

Corollary 4.22. An asymptotic approximation for the expectation a210(n) of the last symbol over Cn(210) is

32a
(
a3 − 2a2 + 3a − 1

) (
8976a2 + 1552a − 9297

)2
(−2 + a)

13225 (152a2 + 64a − 119)
2 ∼ 2.943409552,

where a = −
√
3
3 cos

(
1
6 arctan

(
3
√
111
5

)
+ π

6

)
+ sin

(
1
6 arctan

(
3
√
111
5

)
+ π

6

)
is the solution closest to the origin

of 4z3 − 4z + 1.

4.8. The consecutive patterns 120, 100, and 110

Theorem 4.23. We have H100(x, y) = H110(x, y) = H120(x, y).

Proof. There exists a bijection between Catalan words avoiding 100 and those avoiding 110 preserving the last
symbol: from left to right, we replace each maximal factor kj(k − ℓ), j ≥ 2, ℓ ≥ 1, with the factor k(k − ℓ)j .
For instance, the bijection transforms w = 00012220122331 ∈ C(100) into 00012000122311 ∈ C(110). Since this
bijection preserves the last symbol, the two bivariate generating functions for the these sets are equal.

Also, there is a bijection between Catalan words avoiding 120 and those avoiding 110 preserving the last
symbol: from left to right, we replace each factor kk(k − ℓ), ℓ ≥ 1, with the factor k(k + 1)(k − ℓ). Then, the
two bivariate generating functions for the these sets are equal.

http://oeis.org/A114465
http://oeis.org/A159771
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Theorem 4.24. For p ∈ {120, 100, 110} we have

Hp(x, y) =
1− 2xy −

√
1− 4x+ 4x3

2− 2x2 − 2y + 2xy2
.

Proof. Let w a non-empty Catalan word in C(120) whose first return decomposition is w = 0(w′ + 1)w′′ such
that w′, w′′ ∈ C(120). If w′′ = ϵ then w = 0(w′+1) with w′ possibly empty. The generating function for this case
is x + xyH120(x, y). If w

′′ ̸= ϵ and w′ = ϵ the corresponding generating function is xH120(x, y). If w
′ and w′′

are non-empty, then w′ + 1 does not finish with an ascent a(a+ 1), where a ≥ 1. The corresponding generating
function is

x(H120(x)−H ′
120(x))H120(x, y),

where (see Thm. 2.6 in [5])

H120(x) =
1− 2x2 −

√
1− 4x+ 4x3

2x(1− x)
− 1

and H ′
120(x) is the generating function for non-empty Catalan words avoiding 120 and ending with an ascent,

which induces that H ′
120(x) = xH120(x).

Consequently, we have the functional equation

H120(x, y) = x+ xyH120(x, y) + xH120(x, y) + x(H120(x)− xH120(x))H120(x, y)

and solving this, we obtain the desired result.

Theorem 4.25. Let p ∈ {120, 100, 110}. For n ≥ 2 and 1 ≤ k ≤ n− 1, we have

cp(n, k) = cp(n− 2, k)− cp(n− 1, k − 2) + cp(n, k − 1)

and for n ≥ 2,

cp(n, 0) =
(−1)

n−1−k
2

2
(1 + (−1)n−1−k)

(
k

⌊n−1−k
2 ⌋

)
Ck,

where Ck is the k-th Catalan number.

Proof. For the first recurrence relation, it suffices to check that H120(x, y)− (x2 − xy2 + y)H120(x, y) + xy does
not depend on y. For the second relation, the sequence cp(n, 0) (p ∈ {120, 100, 110}) is already known in the
OEIS [15] as the sequence A157003.

Notice that the sequence A157003 also counts the number of Dyck paths of semilength n avoiding any one of
the words UDUDD, UUDDD, UUDUD, or UUUDD. The first few rows of the matrix Tp for p ∈ {120, 100, 110}

http://oeis.org/A157003
http://oeis.org/A157003
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are

Tp =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
4 5 3 1 0 0 0 0 0
10 12 9 4 1 0 0 0 0
27 32 25 14 5 1 0 0 0
78 90 72 44 20 6 1 0 0
234 266 213 137 70 27 7 1 0
722 812 650 428 235 104 35 8 1


This array does not appear in the OEIS [15], however the row sums of Tp corresponds to the sequence

A087626. The Catalan words corresponding to the bold coefficients for p = 120 in the above array are

C4,0(120) = {0000, 0010, 0100, 0110}, C4,1(120) = {0001, 0011, 0101, 0111, 0121}
C4,2(120) = {0012, 0122, 0112}, and C4,3(120) = {0123},

Corollary 4.26. For p ∈ {120, 100, 110}, an asymptotic approximation for the expectation ap(n) of the last
symbol over Cn(p) is

−
4a
(
4a2 − 5

)2
(2a− 1)

(4a2 + 2a− 3)
2 ∼ 2.340172972,

with a = −
√
3
3 cos

(
1
6 arctan

(
3
√
111
5

)
+ π

6

)
+ sin

(
1
6 arctan

(
3
√
111
5

)
+ π

6

)
.

5. Catalan matrices as Riordan arrays

In this section, we use Riordan arrays to describe the matrices introduced in the previous sections. We start
by giving some background on Riordan arrays [16]. An infinite column vector (a0, a1, . . . )

T has generating
function f(x) if f(x) =

∑
n≥0 anx

n, and we index rows and columns starting at 0. A Riordan array is an

infinite lower triangular matrix whose k-th column has generating function g(x)f(x)k for all k ≥ 0, for some
formal power series g(x) and f(x) with g(0) ̸= 0, f(0) = 0, and f ′(0) ̸= 0. Such a Riordan array is denoted by
(g(x), f(x)). If we multiply this matrix by a column vector (c0, c1, . . . )

T having generating function h(x), then
the resulting column vector has generating function g(x)h(f(x)). The product of two Riordan arrays (g(x), f(x))
and (h(x), l(x)) is defined by

(g(x), f(x)) ∗ (h(x), l(x)) = (g(x)h(f(x)), l(f(x))) . (5.1)

Under this operation, the set of all Riordan arrays is a group [16]. The identity element is I = (1, x), and the
inverse of (g(x), f(x)) is

(g(x), f(x))−1 =
(
1/
(
g ◦ f<−1>

)
(x), f<−1>(x)

)
, (5.2)

where f<−1>(x) denotes the compositional inverse of f(x).
For a consecutive pattern p and a formal power series f(x) =

∑
i≥0 fix

i, such that f0 = 1, we introduce the
infinite matrix

Mf(x)
p :=

(
1 0
f Tp

)
,

http://oeis.org/A087626
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where Tp = (cp(n, k))n≥1,k≥0, f = (f1, f2, . . . )
T , and 0 = (0, 0, . . . ). In other words, let Tp[i] denote the i-th

column of Tp, then Mf(x)
p = (f(x), Tp[0], Tp[1], . . . ).

Theorem 5.1. For p ∈ {010, 000, 210, 120, 100, 110} and f(x) = 1, the matrix Mf(x)
p is a Riordan array given

by (1,Hp(x, 0)).

Proof. Let us deal with the case p = 010 and the remaining cases can be obtained mutatis mutandis. A
Catalan word w ∈ C(010), whose last symbol is k, can be decomposed as w0(w1 + 1) · · · (wk + k), where
wi ∈ ∪n≥1Cn,0(010) for 0 ≤ i ≤ k. Therefore, the generating function of Tp[k] is given by

∑
n≥0 c010(n, k)x

n =

H010(x, 0)
k. Consequently, Mf(x)=1

010 = (1,H010(x, 0),H010(x, 0)
2, . . . ) is a Riordan array.

For example,

Mf(x)=1
010 =

(
1,

1 + x2 −
√
1− 4x+ 2x2 − 4x3 + x4

2(1 + x2)

)
=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 3 3 3 1 0 0 0
0 9 8 6 4 1 0 0
0 25 25 16 10 5 1 0
0 73 74 51 28 15 6 1


.

Theorem 5.2. For p ∈ {001, 011} and f(x) = 1/(1− x), the matrix Mf(x)
p is a Riordan array given by

(
f(x),

Hp(x, 0)

f(x)

)
=

(
1

1− x
, (1− x)Hp(x, 0)

)
.

Proof. Let us deal with case p = 001, for the other case we can follow a similar argument. A Catalan word
w ∈ C(001), whose last symbol is k, can be decomposed as w0(w1 + 1) · · · (wk + k), where wi ∈ ∪n≥1Cn,0(001)
for 0 ≤ i ≤ k. The pattern 001 can be observed in between the blocks (wi + i)(wi+1 + i+ 1) if it has the form
(w′

i + i)0j(w′
i+1 + i + 1), for some j ≥ 1. Therefore, the generating function of the column T001[k] is given by

H001(x, 0)
k/f(x)k−1. From the definition of Riordan array we obtain the desired result.

For example,

Mf(x)=1/(1−x)
001 =

(
1

1− x
,

2(1− x)x

1− x2 +
√
1− 4x+ 2x2 + x4

)
=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 2 1 1 0 0 0 0
1 4 3 1 1 0 0 0
1 9 7 4 1 1 0 0
1 22 18 10 5 1 1 0
1 57 48 28 13 6 1 1


.

Theorem 5.3. The matrix T101 is a Riordan array given by
(
H101(x, 0)/x,H010(x, 0)

)
.
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Proof. Multiplying the right-hand side of the equality by the vector (1, y, y2, . . . )T , which has generating function
1/(1− xy), the resulting vector has bivariate generating function

(
H101(x, 0)/x,H010(x, 0)

) 1

1− xy
=

H101(x, 0)

x

1

1−H010(x, 0)y

=
2− x+ 2x2 − x3 − x

√
1− 4x+ 2x2 − 4x3 + x4

(1− x+ x2)(1− 2xy + x2 +
√
1− 4x+ 2x2 − 4x3 + x4)

=
H101(x, y)

x
,

by Theorem 4.14.

From a similar argument as in the previous theorem we obtain the following theorem.

Theorem 5.4. The matrix T201 is a Riordan array given by
(
H201(x, 0)/x,Hp(x, 0)

)
, where p ∈ {120, 100, 110}.

Notice that the matrix related to the pattern 012 can not be a Riordan array.
From Theorems 5.3 and 5.4 we obtain the following combinatorial identities:

c101(n, k) =
∑

ℓ+ℓ1+···+ℓk=n

c101(ℓ, 0)c010(ℓ1, 0) · · · c010(ℓk, 0)

and

c201(n, k) =
∑

ℓ+ℓ1+···+ℓk=n

c201(ℓ, 0)cp(ℓ1, 0) · · · cp(ℓk, 0),

where p ∈ {120, 100, 110}.
Finally, we will use a characterization of the Riordan arrays given by Rogers in [17]. That is, every element

not belonging to row 0 or column 0 in a Riordan array can be expressed as a fixed linear combination of
the elements in the preceding row. The A-sequence is defined to be the sequence coefficients of this linear
combination. Similarly, Merlini et al. [18] introduced the Z-sequence, that characterizes the elements in column
0, except for the top one.

Theorem 5.5 ([18]). An infinite lower triangular array F = (dn,k)n,k≥0 is a Riordan array if and only if

d0,0 ̸= 0 and there exist two sequences (a0, a1, a2, . . . ), with a0 ̸= 0, and (z0, z1, z2, . . . ) (called the A-sequence
and the Z-sequence, respectively), such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · for n, k ≥ 0,

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · for n ≥ 0.

Note that the A-sequence, the Z-sequence, and the upper-left element completely characterize a Riordan
array.

Theorem 5.6 ([18, 19]). Let F = (g(x), f(x)) be a Riordan array with inverse F−1 = (d(x), h(x)). Then the
A-sequence and the Z-sequence of F have generating functions

A(x) =
x

h(x)
, Z(x) =

1

h(x)
(1− d0,0d(x)) ,

respectively.
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From the definition of the A-sequence and Z-sequence for the Riordan arrays we can give additional recurrence
relations for the sequences cp(n, k).

Theorem 5.7. If Cn denotes the n-th Catalan number, then for n ≥ 2 and k ≥ 0,

c010(n, k) =

n−1∑
ℓ=0

c010(n− 1, k − 1− ℓ) aℓ,

where

an := 1 +

⌊n−1
2 ⌋∑

i=0

(−1)i+1

(
n− i− 1

i

)
Cn−i−1 and Cn :=

{
Cn−1

2
, if n is odd;

0, otherwise.

Proof. By equation (5.2), the inverse of the matrix Mf(x)=1
010 is given by

(Mf(x)=1
010 )−1 =

(
1,

1−
√
1− 4x2 + 8x3 − 4x4

2(1− x)x

)
.

Therefore, by Theorem 5.6, the A-sequence and Z-sequence of the Riordan array Mf(x)=1
010 have generating

functions given by

A(x) =
∑
n≥0

anx
n =

1 +
√
1− 4((1− x)x)2

2(1− x)
and Z(x) = 0.

Notice that A(x) = xF (x(1−x)), where F (x) :=
∑

n≥0 fnx
n = (1+

√
1− 4x2)/(2x). It is possible to prove that

fn = Cn, where Cn is as in the statement of the theorem. By comparing coefficients in A(x) and the recurrences
from Theorem 5.5 we now obtain the desired result.

The first few values of the sequence an for n ≥ 0 are

1, 1, 0, 2, 0, 4, −4, 12, −24, 56, −128, . . . .

We can obtain similar identities for the remaining sequences.

6. Final remarks

We use generating functions to enumerate Catalan words avoiding any consecutive pattern of length two
and three with respect to the length and the value of the last symbol. We note that much of the combinatorial
interpretations given by us are (probably) new and they do not correspond to those that appear in the OEIS.
In this context, it can be of interest to obtain bijections that show the links between the different combinatorial
objects.

Finally, we now give a potential open problem. What is the combinatorial interpretation of the inverse Riordan
arrays introduced in the previous theorem? For example, the absolute value of the second and third columns

of the inverse matrix (Mf(x)=1
010 )−1 are the sequences A104545 (number of Motzkin paths of length n having no

http://oeis.org/A104545
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consecutive (1, 0) steps) and A256169, respectively.

(Mf(x)=1
010 )−1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 −3 3 −3 1 0 0 0
0 5 −8 6 −4 1 0 0
0 −11 17 −16 10 −5 1 0
0 25 −38 39 −28 15 −6 1


.
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