Jean-luc Baril  - Applets

Warning : Maybe your Java configuration does not allow the running  of the Java applet. In this case, open "Security" in "Java control Panel" and add the  http://jl.baril.u-bourgogne.fr in the “exception site list”.

·         Efficient lower and upper bounds of the diagonal-flip distance between triangulations

·         Whole mirror duplication random loss model: A shortest path from the identity to a permutation - See the paper

·         Whole mirror duplication random loss model: A shortest path from the identity to a permutation - Another version

 

 

Constant amortized time algorithms

·         Constant amortized time algorithm for n-length permutations with a fixed number of excedances (Eulerian numbers)

·         Constant Amortized Time algorithm for p-generalized Fibonacci permutations : S_n(321, 312, 234...p(p+1)1)

·         Constant Amortized Time algorithm for p-generalized Fibonacci permutations : S_n(231, 312, (p+1)p(p-1)...321)

·         Constant Amortized Time algorithm for p-generalized Lucas permutations : S_n(321, 312, 234...p(p+1)1, T_p)

·         Constant Amortized Time algorithm for p-generalized Lucas permutations : S_n(231, 312, (p+1)p(p-1)...321, T'_p)

·         Constant Amortized Time algorithm for S_n ( 231,312,321, (p+2)(p+3) \bar{(p+1)p.....43} 12 )  ;    i.e.   (1, p+1)-compositions of the integer (n+p-1)

 

Gray codes

·         Gray code for n-length permutations with a fixed number of cycles

·         Gray code for n-length permutations with a fixed number of  left-to-right minima

·         Gray code for derangements (http://www.u-bourgogne.fr/v.vincent)

·         Gray code for p-generalized Lucas sequences (http://www.u-bourgogne.fr/v.vincent)

·         Optimal Gray code for (1, p)-compositions of n  [ (n-p+1)--length binary strings with at least (p-1)  0s between two 1s]

·         Optimal Gray code for n-length permutations with a unique excedance

·         Optimal Gray  code for n-length permutations (Eulerian plus one) : S_n(321, 2413, 3412, 21534)  \cup \{ 123...(n-1)n \}

·         Optimal Gray code for n-length permutations (2^{n-1}): S_n(321,312)

·         Optimal Gray code for n-length permutations (Catalan): S_n (321)

·         Optimal Gray code for n-length permutations (Catalan): S_n (312)

·         Gray code for n-length permutations (Schröder): S_n (4312, 4321)

·         Gray code for n-length permutations (Schröder): S_n (4132, 4231)

·         Gray code for n-length permutations (Schröder): S_n (4123, 4213)

·         Optimal Gray code for n-length permutations (even index Fibonacci): S_n (321, 3412) 

·         Optimal Gray code for n-length permutations (even index Fibonacci): S_n (321, 4123)

·         Gray code for n-length permutations (Pell): S_n (321, 3412, 4123)

·         Gray code for n-length permutations (Central binomial coefficient): S_n (4321, 4231, 4312, 4132)

·         Gray code for n-length permutations (Central binomial coefficient): S_n (4231, 4132, 4213, 4123)