Equipopularity of descent-equivalent patterns over descent-equivalence classes of words and permutations

Jean-Luc Baril and Vincent Vajnovszki

LIB, Université de Bourgogne Franche-Comté

Graph Theory
Combinatorics and Applications
Al-Ain, U.A.E., October 2019
words, patterns, patterns, statistics, popularity

previous works

main results statement

proof preliminaries
 \(f \)-equivalence
 bijection \(\psi \)
 pattern trace

sketch of the proofs, examples
Outline

• words, patterns, patterns, statistics, popularity
• previous works
 • main results statement
 • proof preliminaries
 • f-equivalence
 • bijection ψ
 • pattern trace
 • sketch of the proofs, examples
Outline

- words, patterns, patterns, statistics, popularity
- previous works
- main results statement
 - proof preliminaries
 - f-equivalence
 - bijection ψ
 - pattern trace
 - sketch of the proofs, examples
words, patterns, patterns, statistics, popularity
previous works
main results statement
proof preliminaries
 \(f \)-equivalence
 bijection \(\psi \)
 pattern trace
sketch of the proofs, examples
words, patterns, patterns, statistics, popularity

previous works

main results statement

proof preliminaries
 - f-equivalence
 - bijection ψ
 - pattern trace

sketch of the proofs, examples
Outline

- words, patterns, patterns, statistics, popularity
- previous works
- main results statement
- proof preliminaries
 - f-equivalence
 - bijection ψ
 - pattern trace
- sketch of the proofs, examples
The **underlying alphabet** of a word is the set of symbols occurring in the word. The **reduction** of a word w, denoted $\text{red}(w)$, is the word order isomorphic with w on the smallest arity alphabet. A **descent** in a word $w_1 w_2 \ldots w_n$ is an i with $w_i > w_{i+1}$ and the **descent set** of w is the set of all such i.

<table>
<thead>
<tr>
<th>word w</th>
<th>underlying alphabet</th>
<th>$\text{red}(w)$</th>
<th>Des(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41341</td>
<td>${1, 3, 4}$</td>
<td>31231</td>
<td>${1,4}$</td>
</tr>
<tr>
<td>11334</td>
<td>${1, 3, 4}$</td>
<td>11223</td>
<td>\emptyset</td>
</tr>
<tr>
<td>42324</td>
<td>${2, 3, 4}$</td>
<td>31213</td>
<td>${1,3}$</td>
</tr>
</tbody>
</table>
The **underlying alphabet** of a word is the set of symbols occurring in the word.
The **reduction** of a word w, denoted $\text{red}(w)$, is the word order isomorphic with w on the smallest arity alphabet.
A **descent** in a word $w_1 w_2 \ldots w_n$ is an i with $w_i > w_{i+1}$ and the **descent set** of w is the set of all such i.

<table>
<thead>
<tr>
<th>word w</th>
<th>underlying alphabet</th>
<th>$\text{red}(w)$</th>
<th>Des(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41341</td>
<td>${1, 3, 4}$</td>
<td>31231</td>
<td>${1, 4}$</td>
</tr>
<tr>
<td>11334</td>
<td>${1, 3, 4}$</td>
<td>11223</td>
<td>\emptyset</td>
</tr>
<tr>
<td>42324</td>
<td>${2, 3, 4}$</td>
<td>31213</td>
<td>${1, 3}$</td>
</tr>
</tbody>
</table>
Two same length words are d-equivalent if they have the same descent set and the same underlying alphabet.

<table>
<thead>
<tr>
<th>word w</th>
<th>Des(w)</th>
<th>underlying alphabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>31443</td>
<td>{1, 4}</td>
<td>{1, 3, 4}</td>
</tr>
<tr>
<td>21332</td>
<td>{1, 4}</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>41131</td>
<td>{1, 4}</td>
<td>{1, 3, 4}</td>
</tr>
</tbody>
</table>
Two same length words are \textit{d}-equivalent if they have the same descent set and the same underlying alphabet.

<table>
<thead>
<tr>
<th>word w</th>
<th>$\text{Des}(w)$</th>
<th>underlying alphabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>31443</td>
<td>${1, 4}$</td>
<td>${1, 3, 4}$</td>
</tr>
<tr>
<td>21332</td>
<td>${1, 4}$</td>
<td>${1, 2, 3}$</td>
</tr>
<tr>
<td>41131</td>
<td>${1, 4}$</td>
<td>${1, 3, 4}$</td>
</tr>
</tbody>
</table>
A **pattern** is a word with the property that if i occurs in it, then so does j, for any j with $1 \leq j \leq i$.

Equivalently, π is a pattern iff $\pi = \text{red}(\pi)$.

The word w **contains** the pattern π if w has a (not necessarily contiguous) subword whose terms are order isomorphic to (i.e., have same relative ordering as) π.

<table>
<thead>
<tr>
<th>pattern</th>
<th>word</th>
<th>$(\pi)w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>w</td>
<td>$(\pi)w$</td>
</tr>
<tr>
<td>212</td>
<td>43143</td>
<td>3</td>
</tr>
<tr>
<td>123</td>
<td>231434</td>
<td>3</td>
</tr>
</tbody>
</table>
A pattern is a word with the property that if \(i \) occurs in it, then so does \(j \), for any \(j \) with \(1 \leq j \leq i \).

Equivalently, \(\pi \) is a pattern iff \(\pi = \text{red}(\pi) \).

The word \(w \) contains the pattern \(\pi \) if \(w \) has a (not necessarily contiguous) subword whose terms are order isomorphic to (i.e., have same relative ordering as) \(\pi \).

<table>
<thead>
<tr>
<th>pattern</th>
<th>word</th>
<th>((\pi)w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>(w)</td>
<td>((\pi)w)</td>
</tr>
<tr>
<td>212</td>
<td>43143</td>
<td>3</td>
</tr>
<tr>
<td>123</td>
<td>231434</td>
<td>3</td>
</tr>
</tbody>
</table>
A pattern is a word with the property that if i occurs in it, then so does j, for any j with $1 \leq j \leq i$. Equivalently, π is a pattern iff $\pi = \text{red}(\pi)$.

The word w contains the pattern π if w has a (not necessarily contiguous) subword whose terms are order isomorphic to (i.e., have same relative ordering as) π.

<table>
<thead>
<tr>
<th>pattern</th>
<th>word</th>
<th>$(\pi)w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>w</td>
<td>3</td>
</tr>
<tr>
<td>212</td>
<td>43143</td>
<td>3</td>
</tr>
<tr>
<td>123</td>
<td>231434</td>
<td>3</td>
</tr>
</tbody>
</table>
A **pattern** is a word with the property that if i occurs in it, then so does j, for any j with $1 \leq j \leq i$.

Equivalently, π is a pattern iff $\pi = red(\pi)$.

The word w **contains** the pattern π if w has a (not necessarily contiguous) subword whose terms are order isomorphic to (i.e., have same relative ordering as) π

<table>
<thead>
<tr>
<th>pattern π</th>
<th>word w</th>
<th>$(\pi)w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>43143</td>
<td>3</td>
</tr>
<tr>
<td>123</td>
<td>231434</td>
<td>3</td>
</tr>
</tbody>
</table>
A combinatorial statistic over the set S is simply an integer valued function on S.
The number of occurrences of a pattern becomes a statistic over the set S of words:

$$|\{w : (\pi)w = p\}|.$$

The popularity of a pattern is the overall number of copies of the pattern within the words of the set

$$\text{the popularity of } \pi \text{ in } S = \sum_{w \in S} (\pi)w,$$
Example

S be the set of 5-permutations with descent set $\{1, 4\}$.

<table>
<thead>
<tr>
<th>$w \in S$</th>
<th>$(213)w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21354</td>
<td>3</td>
</tr>
<tr>
<td>21453</td>
<td>3</td>
</tr>
<tr>
<td>31254</td>
<td>4</td>
</tr>
<tr>
<td>31452</td>
<td>2</td>
</tr>
<tr>
<td>32451</td>
<td>2</td>
</tr>
<tr>
<td>41253</td>
<td>2</td>
</tr>
<tr>
<td>41352</td>
<td>2</td>
</tr>
<tr>
<td>42351</td>
<td>2</td>
</tr>
<tr>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>popularity</td>
<td>20</td>
</tr>
</tbody>
</table>

Main results statement

Theorem

For two patterns π and σ the following statements are equivalent

- π and σ are d-equivalent
- π and σ have the same popularity on any class of d-equivalent words
Example

<table>
<thead>
<tr>
<th>$w \in S$</th>
<th>$(213)w$</th>
<th>$(312)w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21354</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>21453</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>31254</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>31452</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>32451</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>41253</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>41352</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>42351</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>51243</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>51342</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>52341</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>\ldots</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>popularity</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Let π and σ be two d-equivalent patterns. σ is an f-transformation of π if:

Informally: π and σ differ little from each other.

Formally: σ can be obtained from π by either
- increasing or decreasing by 1 an entry in π, or
- interchanging in π two entries with consecutive values.

Example
- $\pi = 211$ and $\sigma = 212$ are f-equivalent
- $\pi = 1332$ and $\sigma = 2331$ are f-equivalent

f-transformation is a symmetric binary relation on a set of d-equivalent patterns and two patterns are said f-equivalent if they belong to the same equivalence class.
Let π and σ be two d-equivalent patterns. σ is an f-transformation of π if:

Informally: π and σ differ little from each other.

Formally: σ can be obtained from π by either

- increasing or decreasing by 1 an entry in π, or
- interchanging in π two entries with consecutive values.

Example

- $\pi = 211$ and $\sigma = 212$ are f-equivalent
- $\pi = 1332$ and $\sigma = 2331$ are f-equivalent

An f-transformation is a symmetric binary relation on a set of d-equivalent patterns and two patterns are said f-equivalent if they belong to the same equivalence class.
Preliminaries : f-equivalence

Let π and σ be two d-equivalent patterns. σ is an f-transformation of π if:

Informally : π and σ differ little from each other.

Formally : σ can be obtained from π by either

- increasing or decreasing by 1 an entry in π, or
- interchanging in π two entries with consecutive values.

Example

- $\pi = 211$ and $\sigma = 212$ are f-equivalent
- $\pi = 1332$ and $\sigma = 2331$ are f-equivalent

f-transformation is a symmetric binary relation on a set of d-equivalent patterns and two patterns are said f-equivalent if they belong to the same equivalence class.
Let π and σ be two d-equivalent patterns. σ is an f-transformation of π if:

Informally: π and σ differ little from each other.

Formally: σ can be obtained from π by either

- increasing or decreasing by 1 an entry in π, or
- interchanging in π two entries with consecutive values.

Example

- $\pi = 211$ and $\sigma = 212$ are f-equivalent
- $\pi = 1332$ and $\sigma = 2331$ are f-equivalent

f-transformation is a symmetric binary relation on a set of d-equivalent patterns and two patterns are said f-equivalent if they belong to the same equivalence class.
Theorem

Two patterns are f-equivalent if and only if they are d-equivalent.

Example 5124332 and 3115241 are d-equivalent

\[
\begin{align*}
5124332 \\
4125332 \\
4125342 \\
3125342 \\
2125342 \\
2115342 \\
2115341 \\
3115241
\end{align*}
\]
Theorem

Two patterns are f-equivalent if and only if they are d-equivalent.

Example 5124332 and 3115241 are d-equivalent

5124332
4125332
4125342
3125342
2125342
2115342
2115341
3115241
Theorem

Two patterns are f-equivalent if and only if they are d-equivalent.

Example 5124332 and 3115241 are d-equivalent

\[
\begin{align*}
5124332 \\
4125332 \\
4125342 \\
3125342 \\
2125342 \\
2115342 \\
2115341 \\
3115241
\end{align*}
\]
We need a bijection ψ from $[q]^n$ into itself satisfying:

(a) ψ preserves the underlying alphabet, and

(b) ψ transforms descent set into ascent set: for any $w \in [q]^n$
 \[\text{Des } w = \text{Asc } \psi(w). \]

ψ based on the bijection ϕ on words defined in [Kitaev, V., 2016],
[Fu, Hua, V., 2017] which in turn is built on Foata and
Schützenberger 1978 bijection j on permutations.
We need a bijection ψ from $[q]^n$ into itself satisfying:

(a) ψ preserves the underlying alphabet, and

(b) ψ transforms descent set into ascent set: for any $w \in [q]^n$

\[\text{Des } w = \text{Asc } \psi(w). \]

ψ based on the bijection ϕ on words defined in [Kitaev, V., 2016], [Fu, Hua, V., 2017] which in turn is built on Foata and Schützenberger 1978 bijection j on permutations.
The bijection ϕ in satisfies for any word w:

(i) $\phi(w)$ is a rearrangement of the symbols of w,

(ii) $\text{Des } w = \{n - i : i \in \text{Des } \phi(w)\}$, and

(iii) $\text{Ides } w = \text{Ides } \phi(w)$,

$$\psi = r \circ \phi$$

Example

<table>
<thead>
<tr>
<th>w</th>
<th>ψ</th>
<th>$\phi(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3321</td>
<td>ψ</td>
<td>3123</td>
</tr>
<tr>
<td>2231</td>
<td>ψ</td>
<td>3212</td>
</tr>
</tbody>
</table>
The bijection ϕ in satisfies for any word w:

(i) $\phi(w)$ is a rearrangement of the symbols of w,
(ii) $\text{Des } w = \{n - i : i \in \text{Des } \phi(w)\}$, and
(iii) $\text{Ides } w = \text{Ides } \phi(w)$,

$$\psi = r \circ \phi$$

Example

\[
\begin{align*}
3321 & \xrightarrow{\psi} 3123 \\
2231 & \xrightarrow{\psi} 3212
\end{align*}
\]
The bijection ϕ in satisfies for any word w:

(i) $\phi(w)$ is a rearrangement of the symbols of w,
(ii) $\text{Des } w = \{n - i : i \in \text{Des } \phi(w)\}$, and
(iii) $\text{Ides } w = \text{Ides } \phi(w)$,

$$\psi = r \circ \phi$$

Example

\[
\begin{align*}
3321 & \xrightarrow{\psi} 3123 \\
2231 & \xrightarrow{\psi} 3212
\end{align*}
\]
Let $\pi = \pi_1 \pi_2 \ldots \pi_k$ be a pattern and $t = t_1 t_2 \ldots t_k$ be a length k word over $[q] \cup \{\square\}$, $q \geq 1$. We say that t is a trace of π if t_i and t_j have the same relative order ($<$, $=\$, or $>$) as π_i and π_j whenever $t_i, t_j \neq \square$.

Example

- $t = \square 44 \square$ is a trace of the pattern $\pi = 1332$

- In $w = 15415432$
 - 1443 is an occurrence of $\pi = 1332$ with trace $t = \square 44 \square$ in
 - at $A = \{3, 6\}$

- In 15415432
 - 1552 is an occurrence of $\pi = 1332$ with trace $t = \square 55 \square$ at
 - $A = \{2, 5\}$

We denote by $(t, A, \pi)_w$ the number of occurrences of π in a word w with trace t at A.
Let $\pi = \pi_1 \pi_2 \ldots \pi_k$ be a pattern and $t = t_1 t_2 \ldots t_k$ be a length k word over $[q] \cup \{\square\}$, $q \geq 1$.

We say that t is a trace of π if t_i and t_j have the same relative order ($<$, $=$, or $>$) as π_i and π_j whenever $t_i, t_j \neq \square$.

Example

- $t = \square 44 \square$ is a trace of the pattern $\pi = 1332$
- in $w = 15415432$
 1443 is an occurrence of $\pi = 1332$ with trace $t = \square 44 \square$ in
 at $A = \{3, 6\}$
- in 15415432
 1552 is an occurrence of $\pi = 1332$ with trace $t = \square 55 \square$ at
 $A = \{2, 5\}$

We denote by $(t, A, \pi)_w$ the number of occurrences of π in a word w with trace t at A.
Let $\pi = \pi_1 \pi_2 \ldots \pi_k$ be a pattern and $t = t_1 t_2 \ldots t_k$ be a length k word over $[q] \cup \{\square\}$, $q \geq 1$. We say that t is a trace of π if t_i and t_j have the same relative order ($<$, $=,$ or $>$) as π_i and π_j whenever $t_i, t_j \neq \square$.

Example

- $t = \square 44 \square$ is a trace of the pattern $\pi = 1332$
- In $w = 15415432$
 - 1443 is an occurrence of $\pi = 1332$ with trace $t = \square 44 \square$ in $A = \{3, 6\}$
- In 15415432
 - 1552 is an occurrence of $\pi = 1332$ with trace $t = \square 55 \square$ at $A = \{2, 5\}$

We denote by $(t, A, \pi)_w$ the number of occurrences of π in a word w with trace t at A.
Let $\pi = \pi_1 \pi_2 \ldots \pi_k$ be a pattern and $t = t_1 t_2 \ldots t_k$ be a length k word over $[q] \cup \{\Box\}$, $q \geq 1$.

We say that t is a trace of π if t_i and t_j have the same relative order ($<$, $=$, or $>$) as π_i and π_j whenever $t_i, t_j \neq \Box$.

Example

- $t = \Box 44 \Box$ is a trace of the pattern $\pi = 1332$
- in $w = 15415432$
 - 1443 is an occurrence of $\pi = 1332$ with trace $t = \Box 44 \Box$ in at $A = \{3, 6\}$
- in 15415432
 - 1552 is an occurrence of $\pi = 1332$ with trace $t = \Box 55 \Box$ at $A = \{2, 5\}$

We denote by $(t, A, \pi)w$ the number of occurrences of π in a word w with trace t at A.

Jean-Luc Baril and Vincent Vajnovszki

Equipopularity of descent-equivalent patterns
What happens if we fix the trace t and the position set A?
For σ is an f-transformation of π, then

$$(t, A, \pi) \text{ and } (t, A, \sigma)$$

have the same distribution on any d-equivalence class.
\(A = \{3, 6\}, \quad t = \Box 44 \Box \)

<table>
<thead>
<tr>
<th>(w \in S)</th>
<th>(\pi = 1332) ((t, A, \pi)w)</th>
<th>(\sigma = 2331) ((t, A, \sigma)w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15415432</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>15425431</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15425432</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>15435421</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15435432</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>25415431</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25425432</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>25435431</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25435421</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25435431</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35415421</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>35415432</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>35425421</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>35425431</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>35435421</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Lemma

Let $\pi = \pi_1 \pi_2 \ldots \pi_k$ and $\sigma = \sigma_1 \sigma_2 \ldots \sigma_k$ be two d-equivalent patterns with $\pi_\ell = \sigma_\ell$ for any ℓ, except $\pi_i = \sigma_i + 1$ for some i. Let also t be a trace of both π and σ with one \square symbol and A be a subset of $\{1, 2, \ldots, n\}$ of cardinality $k - 1$. Then on any d-equivalent class (t, A, π) and (t, A, σ) have the same distribution.
Jean-Luc Baril and Vincent Vajnovszki

Equipopularity of descent-equivalent patterns
Lemma

Let $\pi = \pi_1 \pi_2 \ldots \pi_k$ and $\sigma = \sigma_1 \sigma_2 \ldots \sigma_k$ be two d-equivalent patterns such that there are i and j, $i < j$, with

- $\pi_\ell = \sigma_\ell$ for any ℓ, except $\pi_i = \sigma_j$ and $\pi_j = \sigma_i$,
- $\pi_i = \pi_j + 1$,
- each of π_i and π_j occur once in π (or, equivalently, σ_i and σ_j occur once in σ).

Let also $t = t_1 t_2 \ldots t_k$ be a trace of both π and σ with two symbols. If A is a subset of $\{1, 2, \ldots, n\}$ of cardinality $k - 2$, then on any d-equivalent class the statistics (t, A, π) and (t, A, σ) have the same distribution.
Jean-Luc Baril and Vincent Vajnovszki

Equipopularity of descent-equivalent patterns
What happens if we fix only the position set A?

For σ is an f-transformation of π, then π and σ have the same popularity on any d-equivalence class.
\[A = \{3, 4\}, \quad t = \boxed{t_1 t_2} \text{ some common trace} \]

<table>
<thead>
<tr>
<th>(w \in S)</th>
<th>(\pi = 2123)</th>
<th>(\sigma = 3122)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14245)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(15244)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(24125)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(24145)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(25124)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(25144)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(45122)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\text{popularity}</td>
<td>(\sum_w \sum_t (t, A, \pi) w = 4)</td>
<td>(\sum_w \sum_t (t, A, \sigma) w = 4)</td>
</tr>
</tbody>
</table>
What happens if we fix only the trace t?

For σ is an f-transformation of π, then π and σ have the same popularity on any d-equivalence class.
\[t = 42 \] common trace

<table>
<thead>
<tr>
<th>(w \in S)</th>
<th>(\pi = 211) ((\sum_A(t, A, \pi)w))</th>
<th>(\sigma = 212) ((\sum_A(t, A, \sigma)w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>412321</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>412431</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>412432</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>422321</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>422431</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>423321</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>423421</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>423431</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>424431</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

popularity: \[\sum_w \sum_A(t, A, \pi)w = 8 \]

[Jean-Luc Baril and Vincent Vajnovszki] Equipopularity of descent-equivalent patterns
What happens if neither the trace \(t \) nor the position are fixed

For \(\sigma \) is an \(f \)-transformation of \(\pi \), then \(\pi \) and \(\sigma \) have the same popularity on any \(d \)-equivalence class.
\[w \in S \]

\[
\begin{array}{c|c|c}
\pi = 213 & \sigma = 312 \\
\sum_A \sum_t (t, A, \pi) w & \sum_A \sum_t (t, A, \sigma) w \\
\hline
21354 & 3 & 0 \\
21453 & 3 & 0 \\
31254 & 4 & 1 \\
31452 & 2 & 1 \\
32451 & 2 & 0 \\
41253 & 2 & 0 \\
41352 & 2 & 2 \\
42351 & 2 & 1 \\
51243 & 0 & 0 \\
51342 & 0 & 0 \\
52341 & 0 & 0 \\
\ldots & \ldots & \ldots \\
\text{popularity} & \sum_w \sum_A \sum_t (t, A, \pi) w = 20 & \sum_w \sum_A \sum_t (t, A, \sigma) w = 20 \\
\end{array}
\]
If π is a f-transformation of σ, then π and σ have the same popularity on any d-equivalence class.

\[\Downarrow\]

If π and σ are f-equivalent, then π and σ have the same popularity on any d-equivalence class.

\[\Downarrow\]

If π and σ are d-equivalent, then π and σ have the same popularity on any d-equivalence class.
Thank you for your attention!